Acronym | histodip |
Name | hexagon - octagram duoprism |
Circumradius | sqrt[2-1/sqrt(2)] = 1.137055 |
Dihedral angles | |
Face vector | 48, 96, 62, 14 |
Confer |
|
External links |
As abstract polytope histodip is isomorph to hodip, thereby replacing octagrams by octagons, resp. stop by op.
Incidence matrix according to Dynkin symbol
x6o x8/3o . . . . | 48 | 2 2 | 1 4 1 | 2 2 ----------+----+-------+--------+---- x . . . | 2 | 48 * | 1 2 0 | 2 1 . . x . | 2 | * 48 | 0 2 1 | 1 2 ----------+----+-------+--------+---- x6o . . | 6 | 6 0 | 8 * * | 2 0 x . x . | 4 | 2 2 | * 48 * | 1 1 . . x8/3o | 8 | 0 8 | * * 6 | 0 2 ----------+----+-------+--------+---- x6o x . ♦ 12 | 12 6 | 2 6 0 | 8 * x . x8/3o ♦ 16 | 8 16 | 0 8 2 | * 6
x6o x8/5o . . . . | 48 | 2 2 | 1 4 1 | 2 2 ----------+----+-------+--------+---- x . . . | 2 | 48 * | 1 2 0 | 2 1 . . x . | 2 | * 48 | 0 2 1 | 1 2 ----------+----+-------+--------+---- x6o . . | 6 | 6 0 | 8 * * | 2 0 x . x . | 4 | 2 2 | * 48 * | 1 1 . . x8/5o | 8 | 0 8 | * * 6 | 0 2 ----------+----+-------+--------+---- x6o x . ♦ 12 | 12 6 | 2 6 0 | 8 * x . x8/5o ♦ 16 | 8 16 | 0 8 2 | * 6
x6/5o x8/3o . . . . | 48 | 2 2 | 1 4 1 | 2 2 ------------+----+-------+--------+---- x . . . | 2 | 48 * | 1 2 0 | 2 1 . . x . | 2 | * 48 | 0 2 1 | 1 2 ------------+----+-------+--------+---- x6/5o . . | 6 | 6 0 | 8 * * | 2 0 x . x . | 4 | 2 2 | * 48 * | 1 1 . . x8/3o | 8 | 0 8 | * * 6 | 0 2 ------------+----+-------+--------+---- x6/5o x . ♦ 12 | 12 6 | 2 6 0 | 8 * x . x8/3o ♦ 16 | 8 16 | 0 8 2 | * 6
x6/5o x8/5o . . . . | 48 | 2 2 | 1 4 1 | 2 2 ------------+----+-------+--------+---- x . . . | 2 | 48 * | 1 2 0 | 2 1 . . x . | 2 | * 48 | 0 2 1 | 1 2 ------------+----+-------+--------+---- x6/5o . . | 6 | 6 0 | 8 * * | 2 0 x . x . | 4 | 2 2 | * 48 * | 1 1 . . x8/5o | 8 | 0 8 | * * 6 | 0 2 ------------+----+-------+--------+---- x6/5o x . ♦ 12 | 12 6 | 2 6 0 | 8 * x . x8/5o ♦ 16 | 8 16 | 0 8 2 | * 6
x3x x8/3o . . . . | 48 | 1 1 2 | 1 2 2 1 | 2 1 1 ----------+----+----------+-----------+------ x . . . | 2 | 24 * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 24 * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 48 | 0 1 1 1 | 1 1 1 ----------+----+----------+-----------+------ x3x . . | 6 | 3 3 0 | 8 * * * | 2 0 0 x . x . | 4 | 2 0 2 | * 24 * * | 1 1 0 . x x . | 4 | 0 2 2 | * * 24 * | 1 0 1 . . x8/3o | 8 | 0 0 8 | * * * 6 | 0 1 1 ----------+----+----------+-----------+------ x3x x . ♦ 12 | 6 6 6 | 2 3 3 0 | 8 * * x . x8/3o ♦ 16 | 8 0 16 | 0 8 0 2 | * 3 * . x x8/3o ♦ 16 | 0 8 16 | 0 0 8 2 | * * 3
x3x x8/5o . . . . | 48 | 1 1 2 | 1 2 2 1 | 2 1 1 ----------+----+----------+-----------+------ x . . . | 2 | 24 * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 24 * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 48 | 0 1 1 1 | 1 1 1 ----------+----+----------+-----------+------ x3x . . | 6 | 3 3 0 | 8 * * * | 2 0 0 x . x . | 4 | 2 0 2 | * 24 * * | 1 1 0 . x x . | 4 | 0 2 2 | * * 24 * | 1 0 1 . . x8/5o | 8 | 0 0 8 | * * * 6 | 0 1 1 ----------+----+----------+-----------+------ x3x x . ♦ 12 | 6 6 6 | 2 3 3 0 | 8 * * x . x8/5o ♦ 16 | 8 0 16 | 0 8 0 2 | * 3 * . x x8/5o ♦ 16 | 0 8 16 | 0 0 8 2 | * * 3
x4/3x x6o . . . . | 48 | 1 1 2 | 1 2 2 1 | 2 1 1 ----------+----+----------+-----------+------ x . . . | 2 | 24 * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 24 * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 48 | 0 1 1 1 | 1 1 1 ----------+----+----------+-----------+------ x4/3x . . | 8 | 4 4 0 | 6 * * * | 2 0 0 x . x . | 4 | 2 0 2 | * 24 * * | 1 1 0 . x x . | 4 | 0 2 2 | * * 24 * | 1 0 1 . . x6o | 6 | 0 0 6 | * * * 8 | 0 1 1 ----------+----+----------+-----------+------ x4/3x x . ♦ 16 | 8 8 8 | 2 4 4 0 | 6 * * x . x6o ♦ 12 | 6 0 12 | 0 6 0 2 | * 4 * . x x6o ♦ 12 | 0 6 12 | 0 0 6 2 | * * 4
x4/3x x6/5o . . . . | 48 | 1 1 2 | 1 2 2 1 | 2 1 1 ------------+----+----------+-----------+------ x . . . | 2 | 24 * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 24 * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 48 | 0 1 1 1 | 1 1 1 ------------+----+----------+-----------+------ x4/3x . . | 8 | 4 4 0 | 6 * * * | 2 0 0 x . x . | 4 | 2 0 2 | * 24 * * | 1 1 0 . x x . | 4 | 0 2 2 | * * 24 * | 1 0 1 . . x6/5o | 6 | 0 0 6 | * * * 8 | 0 1 1 ------------+----+----------+-----------+------ x4/3x x . ♦ 16 | 8 8 8 | 2 4 4 0 | 6 * * x . x6/5o ♦ 12 | 6 0 12 | 0 6 0 2 | * 4 * . x x6/5o ♦ 12 | 0 6 12 | 0 0 6 2 | * * 4
x3x x4/3x . . . . | 48 | 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 ----------+----+-------------+-----------------+-------- x . . . | 2 | 24 * * * | 1 1 1 0 0 0 | 1 1 1 0 . x . . | 2 | * 24 * * | 1 0 0 1 1 0 | 1 1 0 1 . . x . | 2 | * * 24 * | 0 1 0 1 0 1 | 1 0 1 1 . . . x | 2 | * * * 24 | 0 0 1 0 1 1 | 0 1 1 1 ----------+----+-------------+-----------------+-------- x3x . . | 6 | 3 3 0 0 | 8 * * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 0 | * 12 * * * * | 1 0 1 0 x . . x | 4 | 2 0 0 2 | * * 12 * * * | 0 1 1 0 . x x . | 4 | 0 2 2 0 | * * * 12 * * | 1 0 0 1 . x . x | 4 | 0 2 0 2 | * * * * 12 * | 0 1 0 1 . . x4/3x | 8 | 0 0 4 4 | * * * * * 6 | 0 0 1 1 ----------+----+-------------+-----------------+-------- x3x x . ♦ 12 | 6 6 6 0 | 2 3 0 3 0 0 | 4 * * * x3x . x ♦ 12 | 6 6 0 6 | 2 0 3 0 3 0 | * 4 * * x . x4/3x ♦ 16 | 8 0 8 8 | 0 4 4 0 0 2 | * * 3 * . x x4/3x ♦ 16 | 0 8 8 8 | 0 0 0 4 4 2 | * * * 3
xux xxx8/3ooo&#xt → both heights = sqrt(3)/2 = 0.866025 (stop || pseudo (x,u)-stop || stop) o.. o..8/3o.. | 16 * * | 1 2 1 0 0 0 0 | 2 1 2 1 0 0 0 0 | 1 1 2 0 0 .o. .o.8/3.o. | * 16 * | 0 0 1 2 1 0 0 | 0 0 2 1 1 2 0 0 | 0 1 2 1 0 ..o ..o8/3..o | * * 16 | 0 0 0 0 1 1 2 | 0 0 0 1 0 2 2 1 | 0 0 2 1 1 ------------------+----------+--------------------+-------------------+---------- x.. ... ... | 2 0 0 | 8 * * * * * * | 2 0 0 1 0 0 0 0 | 1 0 2 0 0 ... x.. ... | 2 0 0 | * 16 * * * * * | 1 1 1 0 0 0 0 0 | 1 1 1 0 0 oo. oo.8/3oo.&#x | 1 1 0 | * * 16 * * * * | 0 0 2 1 0 0 0 0 | 0 1 2 0 0 ... .x. ... | 0 2 0 | * * * 16 * * * | 0 0 1 0 1 1 0 0 | 0 1 1 1 0 .oo .oo8/3.oo&#x | 0 1 1 | * * * * 16 * * | 0 0 0 1 0 2 0 0 | 0 0 2 1 0 ..x ... ... | 0 0 2 | * * * * * 8 * | 0 0 0 1 0 0 2 0 | 0 0 2 0 1 ... ..x ... | 0 0 2 | * * * * * * 16 | 0 0 0 0 0 1 1 1 | 0 0 1 1 1 ------------------+----------+--------------------+-------------------+---------- x.. x.. ... | 4 0 0 | 2 2 0 0 0 0 0 | 8 * * * * * * * | 1 0 1 0 0 ... x..8/3o.. | 8 0 0 | 0 8 0 0 0 0 0 | * 2 * * * * * * | 1 1 0 0 0 ... xx. ...&#x | 2 2 0 | 0 1 2 1 0 0 0 | * * 16 * * * * * | 0 1 1 0 0 xux ... ...&#xt | 2 2 2 | 1 0 2 0 2 1 0 | * * * 8 * * * * | 0 0 2 0 0 ... .x.8/3.o. | 0 8 0 | 0 0 0 8 0 0 0 | * * * * 2 * * * | 0 1 0 1 0 ... .xx ...&#x | 0 2 2 | 0 0 0 1 2 0 1 | * * * * * 16 * * | 0 0 1 1 0 ..x ..x ... | 0 0 4 | 0 0 0 0 0 2 2 | * * * * * * 8 * | 0 0 1 0 1 ... ..x8/3..o | 0 0 8 | 0 0 0 0 0 0 8 | * * * * * * * 2 | 0 0 0 1 1 ------------------+----------+--------------------+-------------------+---------- x.. x..8/3o.. ♦ 16 0 0 | 8 16 0 0 0 0 0 | 8 2 0 0 0 0 0 0 | 1 * * * * ... xx.8/3oo.&#x ♦ 8 8 0 | 0 8 8 8 0 0 0 | 0 1 8 0 1 0 0 0 | * 2 * * * xux xxx ...&#xt ♦ 4 4 4 | 2 2 4 2 4 2 2 | 1 0 2 2 0 2 1 0 | * * 8 * * ... .xx8/3.oo&#x ♦ 0 8 8 | 0 0 0 8 8 0 8 | 0 0 0 0 1 8 0 1 | * * * 2 * ..x ..x8/3..o ♦ 0 0 16 | 0 0 0 0 0 8 16 | 0 0 0 0 0 0 8 2 | * * * * 1
or o.. o..8/3o.. & | 32 * | 1 2 1 0 | 2 1 2 1 0 | 1 1 2 .o. .o.8/3.o. | * 16 | 0 0 2 2 | 0 0 4 1 1 | 0 2 2 ---------------------+-------+-------------+-------------+------ x.. ... ... & | 2 0 | 16 * * * | 2 0 0 1 0 | 1 0 2 ... x.. ... & | 2 0 | * 32 * * | 1 1 1 0 0 | 1 1 1 oo. oo.8/3oo.&#x & | 1 1 | * * 32 * | 0 0 2 1 0 | 0 1 2 ... .x. ... | 0 2 | * * * 16 | 0 0 2 0 1 | 0 2 1 ---------------------+-------+-------------+-------------+------ x.. x.. ... & | 4 0 | 2 2 0 0 | 16 * * * * | 1 0 1 ... x..8/3o.. & | 8 0 | 0 8 0 0 | * 4 * * * | 1 1 0 ... xx. ...&#x & | 2 2 | 0 1 2 1 | * * 32 * * | 0 1 1 xux ... ...&#xt | 4 2 | 2 0 4 0 | * * * n * | 0 0 2 ... .x.8/3.o. | 0 8 | 0 0 0 8 | * * * * 2 | 0 2 0 ---------------------+-------+-------------+-------------+------ x.. x..8/3o.. & ♦ 16 0 | 8 16 0 0 | 8 2 0 0 0 | 2 * * ... xx.8/3oo.&#x & ♦ 8 8 | 0 8 8 8 | 0 1 8 0 1 | * 4 * xux xxx ...&#xt ♦ 8 4 | 4 4 8 2 | 2 0 4 2 0 | * * 8
© 2004-2025 | top of page |