Acronym quitcope Name quasitruncated-cuboctahedron prism Cross sections ` ©` Circumradius sqrt[(7-3 sqrt(2))/2] = 1.174172 Dihedral angles at {4} between cube and hip:   arccos(sqrt(2/3)) = 35.264390° at {4} between cube and stop:   135° at {4} between hip and stop:   arccos(1/sqrt(3)) = 54.735610° at {4} between cube and quitco:   90° at {6} between hip and quitco:   90° at {8/3} between quitco and stop:   90° Confer blends: girpdo Externallinks

As abstract polytope quitcope is isomorphic to gircope, thereby replacing octagrams by octagons, resp. replacing stop by op and quitco by girco.

The blend of 4 quitcopes results in girpdo.

Incidence matrix according to Dynkin symbol

```x x3x4/3x

. . .   . | 96 |  1  1  1  1 |  1  1  1  1  1  1 | 1  1 1 1
----------+----+-------------+-------------------+---------
x . .   . |  2 | 48  *  *  * |  1  1  1  0  0  0 | 1  1 1 0
. x .   . |  2 |  * 48  *  * |  1  0  0  1  1  0 | 1  1 0 1
. . x   . |  2 |  *  * 48  * |  0  1  0  1  0  1 | 1  0 1 1
. . .   x |  2 |  *  *  * 48 |  0  0  1  0  1  1 | 0  1 1 1
----------+----+-------------+-------------------+---------
x x .   . |  4 |  2  2  0  0 | 24  *  *  *  *  * | 1  1 0 0
x . x   . |  4 |  2  0  2  0 |  * 24  *  *  *  * | 1  0 1 0
x . .   x |  4 |  2  0  0  2 |  *  * 24  *  *  * | 0  1 1 0
. x3x   . |  6 |  0  3  3  0 |  *  *  * 16  *  * | 1  0 0 1
. x .   x |  4 |  0  2  0  2 |  *  *  *  * 24  * | 0  1 0 1
. . x4/3x |  8 |  0  0  4  4 |  *  *  *  *  * 12 | 0  0 1 1
----------+----+-------------+-------------------+---------
x x3x   . ♦ 12 |  6  6  6  0 |  3  3  0  2  0  0 | 8  * * *
x x .   x ♦  8 |  4  4  0  4 |  2  0  2  0  2  0 | * 12 * *
x . x4/3x ♦ 16 |  8  0  8  8 |  0  4  4  0  0  2 | *  * 6 *
. x3x4/3x ♦ 48 |  0 24 24 24 |  0  0  0  8 12  6 | *  * * 2
```

```xx3xx4/3xx&#x   → height = 1
(quitco || quitco)

o.3o.4/3o.    | 48  * |  1  1  1  1  0  0  0 | 1  1 1  1  1  1 0  0 0 | 1 1  1 1 0
.o3.o4/3.o    |  * 48 |  0  0  0  1  1  1  1 | 0  0 0  1  1  1 1  1 1 | 0 1  1 1 1
--------------+-------+----------------------+------------------------+-----------
x. ..   ..    |  2  0 | 24  *  *  *  *  *  * | 1  1 0  1  0  0 0  0 0 | 1 1  1 0 0
.. x.   ..    |  2  0 |  * 24  *  *  *  *  * | 1  0 1  0  1  0 0  0 0 | 1 1  0 1 0
.. ..   x.    |  2  0 |  *  * 24  *  *  *  * | 0  1 1  0  0  1 0  0 0 | 1 0  1 1 0
oo3oo4/3oo&#x |  1  1 |  *  *  * 48  *  *  * | 0  0 0  1  1  1 0  0 0 | 0 1  1 1 0
.x ..   ..    |  0  2 |  *  *  *  * 24  *  * | 0  0 0  1  0  0 1  1 0 | 0 1  1 0 1
.. .x   ..    |  0  2 |  *  *  *  *  * 24  * | 0  0 0  0  1  0 1  0 1 | 0 1  0 1 1
.. ..   .x    |  0  2 |  *  *  *  *  *  * 24 | 0  0 0  0  0  1 0  1 1 | 0 0  1 1 1
--------------+-------+----------------------+------------------------+-----------
x.3x.   ..    |  6  0 |  3  3  0  0  0  0  0 | 8  * *  *  *  * *  * * | 1 1  0 0 0
x. ..   x.    |  4  0 |  2  0  2  0  0  0  0 | * 12 *  *  *  * *  * * | 1 0  1 0 0
.. x.4/3x.    |  8  0 |  0  4  4  0  0  0  0 | *  * 6  *  *  * *  * * | 1 0  0 1 0
xx ..   ..&#x |  2  2 |  1  0  0  2  1  0  0 | *  * * 24  *  * *  * * | 0 1  1 0 0
.. xx   ..&#x |  2  2 |  0  1  0  2  0  1  0 | *  * *  * 24  * *  * * | 0 1  0 1 0
.. ..   xx&#x |  2  2 |  0  0  1  2  0  0  1 | *  * *  *  * 24 *  * * | 0 0  1 1 0
.x3.x   ..    |  0  6 |  0  0  0  0  3  3  0 | *  * *  *  *  * 8  * * | 0 1  0 0 1
.x ..   .x    |  0  4 |  0  0  0  0  2  0  2 | *  * *  *  *  * * 12 * | 0 0  1 0 1
.. .x4/3.x    |  0  8 |  0  0  0  0  0  4  4 | *  * *  *  *  * *  * 6 | 0 0  0 1 1
--------------+-------+----------------------+------------------------+-----------
x.3x.4/3x.    ♦ 48  0 | 24 24 24  0  0  0  0 | 8 12 6  0  0  0 0  0 0 | 1 *  * * *
xx3xx   ..&#x ♦  6  6 |  3  3  0  6  3  3  0 | 1  0 0  3  3  0 1  0 0 | * 8  * * *
xx ..   xx&#x ♦  4  4 |  2  0  2  4  2  0  2 | 0  1 0  2  0  2 0  1 0 | * * 12 * *
.. xx4/3xx&#x ♦  8  8 |  0  4  4  8  0  4  4 | 0  0 1  0  4  4 0  0 1 | * *  * 6 *
.x3.x4/3.x    ♦  0 48 |  0  0  0  0 24 24 24 | 0  0 0  0  0  0 8 12 6 | * *  * * 1
```