Acronym pabauhip, J55
Name parabiaugmented hexagonal prism
VRML
  ©
Vertex figure [34], [32,4,6], [42,6]
General of army (is itself convex)
Colonel of regiment (is itself locally convex)
Face vector 14, 26, 14
Confer
uniform relative:
hip  
blend-component:
squippy   hip  
related Johnson solids:
squippy   auhip   mabauhip   tauhip  
general polytopal classes:
Johnson solids   bistratic lace towers  
External
links
wikipedia   polytopewiki   mathworld   quickfur  

Incidence matrix according to Dynkin symbol

oxxxo oxuxo&#xt   → outer heights = 1/sqrt(2) = 0.707107
                    inner heights = sqrt(3)/2 = 0.866025
(pt || pseudo {4} || pseudo (x,u)-{4} || pseudo {4} || pt)

o.... o....     | 1 * * * * | 4 0 0 0 0 0 0 0 0 | 2 2 0 0 0 0 0
.o... .o...     | * 4 * * * | 1 1 1 1 0 0 0 0 0 | 1 1 1 1 0 0 0
..o.. ..o..     | * * 4 * * | 0 0 0 1 1 1 0 0 0 | 0 0 1 1 1 0 0
...o. ...o.     | * * * 4 * | 0 0 0 0 0 1 1 1 1 | 0 0 0 1 1 1 1
....o ....o     | * * * * 1 | 0 0 0 0 0 0 0 0 4 | 0 0 0 0 0 2 2
----------------+-----------+-------------------+--------------
oo... oo...&#x  | 1 1 0 0 0 | 4 * * * * * * * * | 1 1 0 0 0 0 0
.x... .....     | 0 2 0 0 0 | * 2 * * * * * * * | 1 0 1 0 0 0 0
..... .x...     | 0 2 0 0 0 | * * 2 * * * * * * | 0 1 0 1 0 0 0
.oo.. .oo..&#x  | 0 1 1 0 0 | * * * 4 * * * * * | 0 0 1 1 0 0 0
..x.. .....     | 0 0 2 0 0 | * * * * 2 * * * * | 0 0 1 0 1 0 0
..oo. ..oo.&#x  | 0 0 1 1 0 | * * * * * 4 * * * | 0 0 0 1 1 0 0
...x. .....     | 0 0 0 2 0 | * * * * * * 2 * * | 0 0 0 0 1 1 0
..... ...x.     | 0 0 0 2 0 | * * * * * * * 2 * | 0 0 0 1 0 0 1
...oo ...oo&#x  | 0 0 0 1 1 | * * * * * * * * 4 | 0 0 0 0 0 1 1
----------------+-----------+-------------------+--------------
ox... .....&#x  | 1 2 0 0 0 | 2 1 0 0 0 0 0 0 0 | 2 * * * * * *
..... ox...&#x  | 1 2 0 0 0 | 2 0 1 0 0 0 0 0 0 | * 2 * * * * *
.xx.. .....&#x  | 0 2 2 0 0 | 0 1 0 2 1 0 0 0 0 | * * 2 * * * *
..... .xux.&#xt | 0 2 2 2 0 | 0 0 1 2 0 2 0 1 0 | * * * 2 * * *
..xx. .....&#x  | 0 0 2 2 0 | 0 0 0 0 1 2 1 0 0 | * * * * 2 * *
...xo .....&#x  | 0 0 0 2 1 | 0 0 0 0 0 0 1 0 2 | * * * * * 2 *
..... ...xo&#x  | 0 0 0 2 1 | 0 0 0 0 0 0 0 1 2 | * * * * * * 2
or
o.... o....      & | 2 * * | 4 0 0 0 0 | 2 2 0 0
.o... .o...      & | * 8 * | 1 1 1 1 0 | 1 1 1 1
..o.. ..o..        | * * 4 | 0 0 0 2 1 | 0 0 2 1
-------------------+-------+-----------+--------
oo... oo...&#x   & | 1 1 0 | 8 * * * * | 1 1 0 0
.x... .....      & | 0 2 0 | * 4 * * * | 1 0 1 0
..... .x...      & | 0 2 0 | * * 4 * * | 0 1 0 1
.oo.. .oo..&#x   & | 0 1 1 | * * * 8 * | 0 0 1 1
..x.. .....        | 0 0 2 | * * * * 2 | 0 0 2 0
-------------------+-------+-----------+--------
ox... .....&#x   & | 1 2 0 | 2 1 0 0 0 | 4 * * *
..... ox...&#x   & | 1 2 0 | 2 0 1 0 0 | * 4 * *
.xx.. .....&#x   & | 0 2 2 | 0 1 0 2 1 | * * 4 *
..... .xux.&#xt    | 0 4 2 | 0 0 2 4 0 | * * * 2

(xu)o(xu) (ho)A(ho)&#xt   → both heights = 1/2
                            A = h+q = sqrt(3)+sqrt(2) = 3.146264
({6} || pseudo A-line || {6})

(o.).(..) (o.).(..)     & | 8 * * | 1 1 1 1 0 | 1 1 1 1
(.o).(..) (.o).(..)     & | * 4 * | 0 2 0 0 1 | 1 0 0 2
(..)o(..) (..)o(..)       | * * 2 | 0 0 4 0 0 | 0 2 2 0
--------------------------+-------+-----------+--------
(x.).(..) (..).(..)     & | 2 0 0 | 4 * * * * | 1 1 0 0
(oo).(..) (oo).(..)&#x  & | 1 1 0 | * 8 * * * | 1 0 0 1
(o.)o(..) (o.)o(..)&#x  & | 1 0 1 | * * 8 * * | 0 1 1 0
(o.).(o.) (o.).(o.)&#x    | 2 0 0 | * * * 4 * | 0 0 1 1
(.o).(.o) (.o).(.o)&#x    | 0 2 0 | * * * * 2 | 0 0 0 2
--------------------------+-------+-----------+--------
(xu).(..) (ho).(..)&#zx & | 4 2 0 | 2 4 0 0 0 | 2 * * * {6}
(x.)o(..) (..).(..)&#x  & | 2 0 1 | 1 0 2 0 0 | * 4 * *
(o.)o(o.) (o.)o(o.)&#x    | 2 0 1 | 0 0 2 1 0 | * * 4 *
(oo).(oo) (oo).(oo)&#xr   | 2 2 0 | 0 2 0 1 1 | * * * 4

© 2004-2025
top of page