Acronym
|
tico
|
Name
|
truncated icositetrachoron, cantitruncated hexadecachoron
|
|
|
Cross sections
|
©
|
Circumradius
|
sqrt(7) = 2.645751
|
Vertex figure
|
©
|
Vertex layers
|
(d=3x, Q=2q, b=4x, c=3q, e=5x, H=hq)
|
Lace city in approx. ASCII-art
|
©
|
x4o u4o x4q u4o x4o
x4o d4o u4q d4o x4o
u4o d4o x4Q d4o u4o
x4q u4q x4Q x4Q u4q x4q
u4o d4o x4Q d4o u4o
x4o d4o u4q d4o x4o
x4o u4o x4q u4o x4o
|
|
©
|
x3x
x3u x3u
u3x x3d u3x
x3x x3x
d3x u3d d3x
u3x d3u d3u u3x
bu3ub
x3u u3d u3d x3u
x3d d3u x3d
x3x x3x
x3u d3x x3u
u3x u3x
x3x
|
|
©
|
o3o o3o
o3q o3q
q3o o3Q o3Q q3o
o3o o3o
Q3o q3Q q3Q Q3o
Q3q Q3q
o3o H3H H3H o3o
Q3o Q3o
q3o Q3q Q3q q3o
H3H H3H
o3q q3Q q3Q o3q
o3Q o3Q
o3o H3H H3H o3o
q3Q q3Q
o3Q Q3q Q3q o3Q
o3o o3o
o3q Q3o Q3o o3q
q3o q3o
o3o o3o
|
|
Coordinates
|
-
(3/sqrt(2), sqrt(2), 1/sqrt(2), 0) & all permutations, all changes of sign
-
or wrt. dual positioning of underlying ico:
-
(5/2, 1/2, 1/2, 1/2) & all permutations, all changes of sign
(inscribed o3o3q4x)
-
(3/2, 3/2, 3/2, 1/2) & all permutations, all changes of sign
(inscribed q3o3o4u)
-
(2, 1, 1, 1) & all permutations, all changes of sign
(inscribed Q3o3o4x)
|
General of army
|
(is itself convex)
|
Colonel of regiment
|
(is itself locally convex
– uniform polychoral members:
)
|
Dihedral angles
|
- at {4} between cube and toe: 135°
- at {6} between toe and toe: 120°
|
Face vector
|
192, 384, 240, 48
|
Confer
|
- compounds:
-
tastic
tidox
- decompositions:
-
rico || tico
- diminishings:
-
oditico
- general polytopal classes:
-
Wythoffian polychora
lace simplices
partial Stott expansions
|
External links
|
|
Note that tico can be thought of as the external blend of
1 rico + 24 coatoes + 24 teses.
This decomposition is described as the degenerate segmentoteron
ox3xx4oo3oo&#x.
Incidence matrix according to Dynkin symbol
x3x4o3o
. . . . | 192 ♦ 1 3 | 3 3 | 3 1
--------+-----+--------+--------+------
x . . . | 2 | 96 * | 3 0 | 3 0
. x . . | 2 | * 288 | 1 2 | 2 1
--------+-----+--------+--------+------
x3x . . | 6 | 3 3 | 96 * | 2 0
. x4o . | 4 | 0 4 | * 144 | 1 1
--------+-----+--------+--------+------
x3x4o . ♦ 24 | 12 24 | 8 6 | 24 *
. x4o3o ♦ 8 | 0 12 | 0 6 | * 24
snubbed forms: β3x4o3o, x3β4o3o, s3s4o3o, s3s4o3o (faceting only), β3β4o3o
x3x4o3/2o
. . . . | 192 ♦ 1 3 | 3 3 | 3 1
----------+-----+--------+--------+------
x . . . | 2 | 96 * | 3 0 | 3 0
. x . . | 2 | * 288 | 1 2 | 2 1
----------+-----+--------+--------+------
x3x . . | 6 | 3 3 | 96 * | 2 0
. x4o . | 4 | 0 4 | * 144 | 1 1
----------+-----+--------+--------+------
x3x4o . ♦ 24 | 12 24 | 8 6 | 24 *
. x4o3/2o ♦ 8 | 0 12 | 0 6 | * 24
x3x4/3o3o
. . . . | 192 ♦ 1 3 | 3 3 | 3 1
----------+-----+--------+--------+------
x . . . | 2 | 96 * | 3 0 | 3 0
. x . . | 2 | * 288 | 1 2 | 2 1
----------+-----+--------+--------+------
x3x . . | 6 | 3 3 | 96 * | 2 0
. x4/3o . | 4 | 0 4 | * 144 | 1 1
----------+-----+--------+--------+------
x3x4/3o . ♦ 24 | 12 24 | 8 6 | 24 *
. x4/3o3o ♦ 8 | 0 12 | 0 6 | * 24
x3x4/3o3/2o
. . . . | 192 ♦ 1 3 | 3 3 | 3 1
------------+-----+--------+--------+------
x . . . | 2 | 96 * | 3 0 | 3 0
. x . . | 2 | * 288 | 1 2 | 2 1
------------+-----+--------+--------+------
x3x . . | 6 | 3 3 | 96 * | 2 0
. x4/3o . | 4 | 0 4 | * 144 | 1 1
------------+-----+--------+--------+------
x3x4/3o . ♦ 24 | 12 24 | 8 6 | 24 *
. x4/3o3/2o ♦ 8 | 0 12 | 0 6 | * 24
x3x3x4o
. . . . | 192 ♦ 1 1 2 | 1 2 2 1 | 2 1 1
--------+-----+-----------+-------------+--------
x . . . | 2 | 96 * * | 1 2 0 0 | 2 1 0
. x . . | 2 | * 96 * | 1 0 2 0 | 2 0 1
. . x . | 2 | * * 192 | 0 1 1 1 | 1 1 1
--------+-----+-----------+-------------+--------
x3x . . | 6 | 3 3 0 | 32 * * * | 2 0 0
x . x . | 4 | 2 0 2 | * 96 * * | 1 1 0
. x3x . | 6 | 0 3 3 | * * 64 * | 1 0 1
. . x4o | 4 | 0 0 4 | * * * 48 | 0 1 1
--------+-----+-----------+-------------+--------
x3x3x . ♦ 24 | 12 12 12 | 4 6 4 0 | 16 * *
x . x4o ♦ 8 | 4 0 8 | 0 4 0 2 | * 24 *
. x3x4o ♦ 24 | 0 12 24 | 0 0 8 6 | * * 8
snubbed forms: β3x3x4o, x3β3x4o, x3x3β4o, β3β3x4o, β3x3β4o, x3β3β4o, s3s3s4o, s3s3s4o (faceting only)
x3x3x4/3o
. . . . | 192 ♦ 1 1 2 | 1 2 2 1 | 2 1 1
----------+-----+-----------+-------------+--------
x . . . | 2 | 96 * * | 1 2 0 0 | 2 1 0
. x . . | 2 | * 96 * | 1 0 2 0 | 2 0 1
. . x . | 2 | * * 192 | 0 1 1 1 | 1 1 1
----------+-----+-----------+-------------+--------
x3x . . | 6 | 3 3 0 | 32 * * * | 2 0 0
x . x . | 4 | 2 0 2 | * 96 * * | 1 1 0
. x3x . | 6 | 0 3 3 | * * 64 * | 1 0 1
. . x4/3o | 4 | 0 0 4 | * * * 48 | 0 1 1
----------+-----+-----------+-------------+--------
x3x3x . ♦ 24 | 12 12 12 | 4 6 4 0 | 16 * *
x . x4/3o ♦ 8 | 4 0 8 | 0 4 0 2 | * 24 *
. x3x4/3o ♦ 24 | 0 12 24 | 0 0 8 6 | * * 8
x3x3x *b3x
. . . . | 192 ♦ 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1
-----------+-----+-------------+-------------------+---------
x . . . | 2 | 96 * * * | 1 1 1 0 0 0 | 1 1 1 0
. x . . | 2 | * 96 * * | 1 0 0 1 1 0 | 1 1 0 1
. . x . | 2 | * * 96 * | 0 1 0 1 0 1 | 1 0 1 1
. . . x | 2 | * * * 96 | 0 0 1 0 1 1 | 0 1 1 1
-----------+-----+-------------+-------------------+---------
x3x . . | 6 | 3 3 0 0 | 32 * * * * * | 1 1 0 0
x . x . | 4 | 2 0 2 0 | * 48 * * * * | 1 0 1 0
x . . x | 4 | 2 0 0 2 | * * 48 * * * | 0 1 1 0
. x3x . | 6 | 0 3 3 0 | * * * 32 * * | 1 0 0 1
. x . *b3x | 6 | 0 3 0 3 | * * * * 32 * | 0 1 0 1
. . x x | 4 | 0 0 2 2 | * * * * * 48 | 0 0 1 1
-----------+-----+-------------+-------------------+---------
x3x3x . ♦ 24 | 12 12 12 0 | 4 6 0 4 0 0 | 8 * * *
x3x . *b3x ♦ 24 | 12 12 0 12 | 4 0 6 0 4 0 | * 8 * *
x . x x ♦ 8 | 4 0 4 4 | 0 2 2 0 0 2 | * * 24 *
. x3x *b3x ♦ 24 | 0 12 12 12 | 0 0 0 4 4 6 | * * * 8
snubbed forms: β3x3x *b3x, x3β3x *b3x, β3β3x *b3x, β3x3β *b3x, β3β3β *b3x, β3x3β *b3β, s3s3s *b3s, s3s3s *b3s (faceting only)
s4x3x3x
demi( . . . . ) | 192 ♦ 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1
----------------+-----+-------------+-------------------+---------
demi( . x . . ) | 2 | 96 * * * | 1 1 1 0 0 0 | 1 1 1 0
demi( . . x . ) | 2 | * 96 * * | 0 1 0 1 1 0 | 1 0 1 1
demi( . . . x ) | 2 | * * 96 * | 0 0 1 1 0 1 | 0 1 1 1
sefa( s4x . . ) | 2 | * * * 96 | 1 0 0 0 1 1 | 1 1 0 1
----------------+-----+-------------+-------------------+---------
s4x . . ♦ 4 | 2 0 0 2 | 48 * * * * * | 1 1 0 0
demi( . x3x . ) | 6 | 3 3 0 0 | * 32 * * * * | 1 0 1 0
demi( . x . x ) | 4 | 2 0 2 0 | * * 48 * * * | 0 1 1 0
demi( . . x3x ) | 6 | 0 3 3 0 | * * * 32 * * | 0 0 1 1
sefa( s4x3x . ) | 6 | 0 3 0 3 | * * * * 32 * | 1 0 0 1
sefa( s4x . x ) | 4 | 0 0 2 2 | * * * * * 48 | 0 1 0 1
----------------+-----+-------------+-------------------+---------
s4x3x . ♦ 24 | 12 12 0 12 | 6 4 0 0 4 0 | 8 * * *
s4x . x ♦ 8 | 4 0 4 4 | 2 0 2 0 0 2 | * 24 * *
demi( . x3x3x ) ♦ 24 | 12 12 12 0 | 0 4 6 4 0 0 | * * 8 *
sefa( s4x3x3x ) ♦ 24 | 0 12 12 12 | 0 0 0 4 4 6 | * * * 8
starting figure: x4x3x3x
xuxxxux3xxuxuxx4oooqooo&#xt → all heights = 1/sqrt(2) = 0.707107
(toe || pseudo (u,x)-toe || pseudo (x,u)-toe || pseudo (x,x,q)-girco || pseudo (x,u)-toe || pseudo (u,x)-toe || toe)
o......3o......4o...... & | 48 * * * ♦ 1 2 1 0 0 0 0 0 0 | 2 1 1 2 0 0 0 0 0 | 1 2 1 0 0
.o.....3.o.....4.o..... & | * 48 * * ♦ 0 0 1 2 1 0 0 0 0 | 0 0 1 2 1 2 0 0 0 | 0 2 1 1 0
..o....3..o....4..o.... & | * * 48 * ♦ 0 0 0 0 1 1 2 0 0 | 0 0 1 0 0 2 2 1 0 | 0 2 0 1 1
...o...3...o...4...o... | * * * 48 ♦ 0 0 0 0 0 0 2 1 1 | 0 0 0 0 0 2 2 1 1 | 0 2 0 1 1
-------------------------------+-------------+----------------------------+---------------------------+-------------
x...... ....... ....... & | 2 0 0 0 | 24 * * * * * * * * | 2 0 1 0 0 0 0 0 0 | 1 2 0 0 0
....... x...... ....... & | 2 0 0 0 | * 48 * * * * * * * | 1 1 0 1 0 0 0 0 0 | 1 1 1 0 0
oo.....3oo.....4oo.....&#x & | 1 1 0 0 | * * 48 * * * * * * | 0 0 1 2 0 0 0 0 0 | 0 2 1 0 0
....... .x..... ....... & | 0 2 0 0 | * * * 48 * * * * * | 0 0 0 1 1 1 0 0 0 | 0 1 1 1 0
.oo....3.oo....4.oo....&#x & | 0 1 1 0 | * * * * 48 * * * * | 0 0 1 0 0 2 0 0 0 | 0 2 0 1 0
..x.... ....... ....... & | 0 0 2 0 | * * * * * 24 * * * | 0 0 1 0 0 0 2 0 0 | 0 2 0 0 1
..oo...3..oo...4..oo...&#x & | 0 0 1 1 | * * * * * * 96 * * | 0 0 0 0 0 1 1 1 0 | 0 1 0 1 1
...x... ....... ....... | 0 0 0 2 | * * * * * * * 24 * | 0 0 0 0 0 0 2 0 1 | 0 2 0 0 1
....... ...x... ....... | 0 0 0 2 | * * * * * * * * 24 | 0 0 0 0 0 2 0 0 1 | 0 2 0 1 0
-------------------------------+-------------+----------------------------+---------------------------+-------------
x......3x...... ....... & | 6 0 0 0 | 3 3 0 0 0 0 0 0 0 | 16 * * * * * * * * | 1 1 0 0 0
....... x......4o...... & | 4 0 0 0 | 0 4 0 0 0 0 0 0 0 | * 12 * * * * * * * | 1 0 1 0 0
xux.... ....... .......&#xt & | 2 2 2 0 | 1 0 2 0 2 1 0 0 0 | * * 24 * * * * * * | 0 2 0 0 0
....... xx..... .......&#x & | 2 2 0 0 | 0 1 2 1 0 0 0 0 0 | * * * 48 * * * * * | 0 1 1 0 0
....... .x.....4.o..... & | 0 4 0 0 | 0 0 0 4 0 0 0 0 0 | * * * * 12 * * * * | 0 0 1 1 0
....... .xux... .......&#xt & | 0 2 2 2 | 0 0 0 1 2 0 2 0 1 | * * * * * 48 * * * | 0 1 0 1 0
..xx... ....... .......&#x & | 0 0 2 2 | 0 0 0 0 0 1 2 1 0 | * * * * * * 48 * * | 0 1 0 0 1
....... ....... ..oqo..&#xt | 0 0 2 2 | 0 0 0 0 0 0 4 0 0 | * * * * * * * 24 * | 0 0 0 1 1
...x...3...x... ....... | 0 0 0 6 | 0 0 0 0 0 0 0 3 3 | * * * * * * * * 8 | 0 2 0 0 0
-------------------------------+-------------+----------------------------+---------------------------+-------------
x......3x......4o...... & ♦ 24 0 0 0 | 12 24 0 0 0 0 0 0 0 | 8 6 0 0 0 0 0 0 0 | 2 * * * *
xuxx...3xxux... .......&#xt & ♦ 6 6 6 6 | 3 3 6 3 6 3 6 3 3 | 1 0 3 3 0 3 3 0 1 | * 16 * * *
....... xx.....4oo.....&#x & ♦ 4 4 0 0 | 0 4 4 4 0 0 0 0 0 | 0 1 0 4 1 0 0 0 0 | * * 12 * *
....... .xuxux.4.ooqoo.&#xt ♦ 0 8 8 8 | 0 0 0 8 8 0 16 0 4 | 0 0 0 0 2 8 0 4 0 | * * * 6 *
..xxx.. ....... ..oqo..&#xt ♦ 0 0 4 4 | 0 0 0 0 0 2 8 2 0 | 0 0 0 0 0 0 4 2 0 | * * * * 12
oqQ3ooo3qoo4xux&#zxt → all existing heights = 0, Q = 2q = 2.828427
o..3o..3o..4o.. | 64 * * ♦ 1 3 0 0 | 3 3 0 | 3 0 1
.o.3.o.3.o.4.o. | * 64 * ♦ 0 3 1 0 | 3 3 0 | 3 0 1
..o3..o3..o4..o | * * 64 ♦ 0 0 1 3 | 0 3 3 | 3 1 0
---------------------+----------+--------------+----------+--------
... ... ... x.. | 2 0 0 | 32 * * * | 0 3 0 | 3 0 0
oo.3oo.3oo.4oo.&#x | 1 1 0 | * 192 * * | 2 1 0 | 2 0 1
.oo3.oo3.oo4.oo&#x | 0 1 1 | * * 64 * | 0 3 0 | 3 0 0
... ... ... ..x | 0 0 2 | * * * 96 | 0 1 2 | 2 1 0
---------------------+----------+--------------+----------+--------
oq. ... qo. ...&#zx | 2 2 0 | 0 4 0 0 | 96 * * | 1 0 1
... ... ... xux&#xt | 2 2 2 | 1 2 2 1 | * 96 * | 2 0 0
... ... ..o4..x | 0 0 4 | 0 0 0 4 | * * 48 | 1 1 0
---------------------+----------+--------------+----------+--------
oqQ ... qoo4xux&#zxt ♦ 8 8 8 | 4 16 8 8 | 4 8 2 | 24 * *
... ..o3..o4..x ♦ 0 0 8 | 0 0 0 12 | 0 0 6 | * 8 *
oq.3oo.3qo. ...&#zx ♦ 4 4 0 | 0 12 0 0 | 6 0 0 | * * 16