Acronym ...
Name o3q4x,
variation of truncated cube
Circumradius sqrt(19)/2 = 2.179449
General of army (is itself convex)
Colonel of regiment (is itself locally convex)
Dihedral angles
  • between o3q and q4x:   arccos[-1/sqrt(3)] = 125.264390°
  • between q4x and q4x (at x):   90°
Face vector 24, 36, 14
Confer
uniform variant:
tic  
variations:
a3b4c   o3x4q   o3x4u  

using edge sizes x = 1 and q = sqrt(2) = 1.414214


Incidence matrix according to Dynkin symbol

o3q4x

. . . | 24 |  2  1 | 1 2
------+----+-------+----
. q . |  2 | 24  * | 1 1
. . x |  2 |  * 12 | 0 2
------+----+-------+----
o3q . |  3 |  3  0 | 8 *
. q4x |  8 |  4  4 | * 6

o3/2q4x

.   . . | 24 |  2  1 | 1 2
--------+----+-------+----
.   q . |  2 | 24  * | 1 1
.   . x |  2 |  * 12 | 0 2
--------+----+-------+----
o3/2q . |  3 |  3  0 | 8 *
.   q4x |  8 |  4  4 | * 6

qQ3oo3Qq&#zx   → height = 0, where Q = sqrt(8) = 2.828427 (pseudo)
(tegum sum of 2 alternate q3o3Q)

o.3o.3o.     | 12  * |  2  1  0 | 1 2 0
.o3.o3.o     |  * 12 |  0  1  2 | 0 2 1
-------------+-------+----------+------
q. .. ..     |  2  0 | 12  *  * | 1 1 0
oo3oo3oo&#x  |  1  1 |  * 12  * | 0 2 0
.. .. .q     |  0  2 |  *  * 12 | 0 1 1
-------------+-------+----------+------
q.3o. ..     |  3  0 |  3  0  0 | 4 * *
qQ .. Qq&#zx |  4  4 |  2  4  2 | * 6 *
.. .o3.q     |  0  3 |  0  0  3 | * * 4

© 2004-2024
top of page