Acronym ..., sidpith || tat
Name (degenerate) sidpith atop tat
Circumradius ∞   i.e. flat in euclidean space
Face vector 128, 512, 776, 472, 82
Confer
general polytopal classes:
decomposition  

It either can be thought of as a degenerate 5D segmentotope with zero height, or as a 4D euclidean decomposition of the larger base into smaller bits.


Incidence matrix according to Dynkin symbol

xo3oo3ox4xx&#x   → height = 0
(sidpith || tat)

o.3o.3o.4o.    | 64  * |  3  3   3  0  0 |  3  6  3   6   3  3  0  0 |  1  3  3 1  3  3  6  1  3  0 0 | 1  1  3  3 1 0
.o3.o3.o4.o    |  * 64 |  0  0   3  3  1 |  0  0  0   3   6  3  3  3 |  0  0  0 0  1  3  3  3  6  1 3 | 0  1  1  3 3 1
---------------+-------+-----------------+---------------------------+--------------------------------+---------------
x. .. .. ..    |  2  0 | 96  *   *  *  * |  2  2  0   2   0  0  0  0 |  1  2  1 0  2  1  2  0  0  0 0 | 1  1  2  1 0 0
.. .. .. x.    |  2  0 |  * 96   *  *  * |  0  2  2   0   0  1  0  0 |  0  1  2 1  0  0  2  0  2  0 0 | 1  0  1  2 1 0
oo3oo3oo4oo&#x |  1  1 |  *  * 192  *  * |  0  0  0   2   2  1  0  0 |  0  0  0 0  1  2  2  1  2  0 0 | 0  1  1  2 1 0
.. .. .x ..    |  0  2 |  *  *   * 96  * |  0  0  0   0   2  0  2  1 |  0  0  0 0  0  1  0  2  2  1 2 | 0  1  0  1 2 1
.. .. .. .x    |  0  2 |  *  *   *  * 32 |  0  0  0   0   0  3  0  3 |  0  0  0 0  0  0  3  0  6  0 3 | 0  0  1  3 3 1
---------------+-------+-----------------+---------------------------+--------------------------------+---------------
x.3o. .. ..    |  3  0 |  3  0   0  0  0 | 64  *  *   *   *  *  *  * |  1  1  0 0  1  0  0  0  0  0 0 | 1  1  1  0 0 0
x. .. .. x.    |  4  0 |  2  2   0  0  0 |  * 96  *   *   *  *  *  * |  0  1  1 0  0  0  1  0  0  0 0 | 1  0  1  1 0 0
.. .. o.4x.    |  4  0 |  0  4   0  0  0 |  *  * 48   *   *  *  *  * |  0  0  1 1  0  0  0  0  1  0 0 | 1  0  0  1 1 0
xo .. .. ..&#x |  2  1 |  1  0   2  0  0 |  *  *  * 192   *  *  *  * |  0  0  0 0  1  1  1  0  0  0 0 | 0  1  1  1 0 0
.. .. ox ..&#x |  1  2 |  0  0   2  1  0 |  *  *  *   * 192  *  *  * |  0  0  0 0  0  1  0  1  1  0 0 | 0  1  0  1 1 0
.. .. .. xx&#x |  2  2 |  0  1   2  0  1 |  *  *  *   *   * 96  *  * |  0  0  0 0  0  0  2  0  2  0 0 | 0  0  1  2 1 0
.. .o3.x ..    |  0  3 |  0  0   0  3  0 |  *  *  *   *   *  * 64  * |  0  0  0 0  0  0  0  1  0  1 1 | 0  1  0  0 1 1
.. .. .x4.x    |  0  8 |  0  0   0  4  4 |  *  *  *   *   *  *  * 24 |  0  0  0 0  0  0  0  0  2  0 2 | 0  0  0  1 2 1
---------------+-------+-----------------+---------------------------+--------------------------------+---------------
x.3o.3o. ..      4  0 |  6  0   0  0  0 |  4  0  0   0   0  0  0  0 | 16  *  * *  *  *  *  *  *  * * | 1  1  0  0 0 0
x.3o. .. x.      6  0 |  6  3   0  0  0 |  2  3  0   0   0  0  0  0 |  * 32  * *  *  *  *  *  *  * * | 1  0  1  0 0 0
x. .. o.4x.      8  0 |  4  8   0  0  0 |  0  4  2   0   0  0  0  0 |  *  * 24 *  *  *  *  *  *  * * | 1  0  0  1 0 0
.. o.3o.4x.      8  0 |  0 12   0  0  0 |  0  0  6   0   0  0  0  0 |  *  *  * 8  *  *  *  *  *  * * | 1  0  0  0 1 0
xo3oo .. ..&#x   3  1 |  3  0   3  0  0 |  1  0  0   3   0  0  0  0 |  *  *  * * 64  *  *  *  *  * * | 0  1  1  0 0 0
xo .. ox ..&#x   2  2 |  1  0   4  1  0 |  0  0  0   2   2  0  0  0 |  *  *  * *  * 96  *  *  *  * * | 0  1  0  1 0 0
xo .. .. xx&#x   4  2 |  2  2   4  0  1 |  0  1  0   2   0  2  0  0 |  *  *  * *  *  * 96  *  *  * * | 0  0  1  1 0 0
.. oo3ox ..&#x   1  3 |  0  0   3  3  0 |  0  0  0   0   3  0  1  0 |  *  *  * *  *  *  * 64  *  * * | 0  1  0  0 1 0
.. .. ox4xx&#x   4  8 |  0  4   8  4  4 |  0  0  1   0   4  4  0  1 |  *  *  * *  *  *  *  * 48  * * | 0  0  0  1 1 0
.o3.o3.x ..      0  4 |  0  0   0  6  0 |  0  0  0   0   0  0  4  0 |  *  *  * *  *  *  *  *  * 16 * | 0  1  0  0 0 1
.. .o3.x4.x      0 24 |  0  0   0 24 12 |  0  0  0   0   0  0  8  6 |  *  *  * *  *  *  *  *  *  * 8 | 0  0  0  0 1 1
---------------+-------+-----------------+---------------------------+--------------------------------+---------------
x.3o.3o.4x.     64  0 | 96 96   0  0  0 | 64 96 48   0   0  0  0  0 | 16 32 24 8  0  0  0  0  0  0 0 | 1  *  *  * * *
xo3oo3ox ..&#x   4  4 |  6  0  12  6  0 |  4  0  0  12  12  0  4  0 |  1  0  0 0  4  6  0  4  0  1 0 | * 16  *  * * *
xo3oo .. xx&#x   6  2 |  6  3   6  0  1 |  2  3  0   6   0  3  0  0 |  0  1  0 0  2  0  3  0  0  0 0 | *  * 32  * * *
xo .. ox4xx&#x   8  8 |  4  8  16  4  4 |  0  4  2   8   8  8  0  1 |  0  0  1 0  0  4  4  0  2  0 0 | *  *  * 24 * *
.. oo3ox4xx&#x   8 24 |  0 12  24 24 12 |  0  0  6   0  24 12  8  6 |  0  0  0 1  0  0  0  8  6  0 1 | *  *  *  * 8 *
.x3.o3.x4.x      0 64 |  0  0   0 96 32 |  0  0  0   0   0  0 64 24 |  0  0  0 0  0  0  0  0  0 16 8 | *  *  *  * * 1

© 2004-2024
top of page