Acronym quitit
Name quasitruncated tesseract
Cross sections
 ©
Circumradius sqrt[(5-3 sqrt(2))/2] = 0.615370
Inradius
wrt. quith
[sqrt(2)-1]/2 = 0.207107
Inradius
wrt. tet
(4-3 sqrt(2))/4 = 0.060660
Density 15
Coordinates ((sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2)   & all permutations, all changes of sign
Volume (72 sqrt(2)-101)/6 = 0.137229
Surface 56-36 sqrt(2) = 5.088312
General of army sidpith
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: quith tet
quitit 816
)
Face vector 64, 128, 88, 24
Confer
blends:
otbaquitit  
general polytopal classes:
Wythoffian polychora  
analogs:
quasitruncated hypercube qtCn  
External
links
hedrondude   polytopewiki   WikiChoron

As abstract polytope quitit is isomorphic to tat, thereby replacing the octagrams by octagons, resp. replacing quith by tic.

Note that the tets become retrograde here.


Incidence matrix according to Dynkin symbol

o3o3x4/3x

. . .   . | 64 |  3  1 |  3  3 |  1 3
----------+----+-------+-------+-----
. . x   . |  2 | 96  * |  2  1 |  1 2
. . .   x |  2 |  * 32 |  0  3 |  0 3
----------+----+-------+-------+-----
. o3x   . |  3 |  3  0 | 64  * |  1 1
. . x4/3x |  8 |  4  4 |  * 24 |  0 2
----------+----+-------+-------+-----
o3o3x   .   4 |  6  0 |  4  0 | 16 *
. o3x4/3x  24 | 24 12 |  8  6 |  * 8

o3o3/2x4/3x

. .   .   . | 64 |  3  1 |  3  3 |  1 3
------------+----+-------+-------+-----
. .   x   . |  2 | 96  * |  2  1 |  1 2
. .   .   x |  2 |  * 32 |  0  3 |  0 3
------------+----+-------+-------+-----
. o3/2x   . |  3 |  3  0 | 64  * |  1 1
. .   x4/3x |  8 |  4  4 |  * 24 |  0 2
------------+----+-------+-------+-----
o3o3/2x   .   4 |  6  0 |  4  0 | 16 *
. o3/2x4/3x  24 | 24 12 |  8  6 |  * 8

o3/2o3x4/3x

.   . .   . | 64 |  3  1 |  3  3 |  1 3
------------+----+-------+-------+-----
.   . x   . |  2 | 96  * |  2  1 |  1 2
.   . .   x |  2 |  * 32 |  0  3 |  0 3
------------+----+-------+-------+-----
.   o3x   . |  3 |  3  0 | 64  * |  1 1
.   . x4/3x |  8 |  4  4 |  * 24 |  0 2
------------+----+-------+-------+-----
o3/2o3x   .   4 |  6  0 |  4  0 | 16 *
.   o3x4/3x  24 | 24 12 |  8  6 |  * 8

o3/2o3/2x4/3x

.   .   .   . | 64 |  3  1 |  3  3 |  1 3
--------------+----+-------+-------+-----
.   .   x   . |  2 | 96  * |  2  1 |  1 2
.   .   .   x |  2 |  * 32 |  0  3 |  0 3
--------------+----+-------+-------+-----
.   o3/2x   . |  3 |  3  0 | 64  * |  1 1
.   .   x4/3x |  8 |  4  4 |  * 24 |  0 2
--------------+----+-------+-------+-----
o3/2o3/2x   .   4 |  6  0 |  4  0 | 16 *
.   o3/2x4/3x  24 | 24 12 |  8  6 |  * 8

© 2004-2025
top of page