Acronym ... Name o3β3x4o (?) Circumradius ...

No uniform realisation is possible.

Incidence matrix according to Dynkin symbol

```o3β3x4o

both( . . . . ) | 96 |  2  2   4 |  1  1  4  4  2 |  2 2  2
----------------+----+-----------+----------------+--------
both( . . x . ) |  2 | 96  *   * |  1  0  2  0  0 |  1 2  0
sefa( o3β . . ) |  2 |  * 96   * |  0  1  0  2  0 |  2 0  1
sefa( . β3x . ) |  2 |  *  * 192 |  0  0  1  1  1 |  1 1  1
----------------+----+-----------+----------------+--------
both( . . x4o ) |  4 |  4  0   0 | 24  *  *  *  * |  0 2  0
o3β . .   ♦  3 |  0  3   0 |  * 32  *  *  * |  2 0  0
. β3x .   ♦  6 |  3  0   3 |  *  * 64  *  * |  1 1  0
sefa( o3β3x . ) |  4 |  0  2   2 |  *  *  * 96  * |  1 0  1
sefa( . β3x4o ) |  4 |  0  0   4 |  *  *  *  * 48 |  0 1  1
----------------+----+-----------+----------------+--------
o3β3x .   ♦ 12 |  6 12  12 |  0  4  4  6  0 | 16 *  *
. β3x4o   ♦ 24 | 24  0  24 |  6  0  8  0  6 |  * 8  *
sefa( o3β3x4o ) ♦  8 |  0  4   8 |  0  0  0  4  2 |  * * 24

starting figure: o3x3x4o
```

```x3β3x *b3o

both( . . .    . ) | 96 |  1  1  2  2  2 |  1  2  2  1  2  2  2 | 2 1 1  2
-------------------+----+----------------+----------------------+---------
both( x . .    . ) |  2 | 48  *  *  *  * |  1  2  0  0  0  0  0 | 2 1 0  0
both( . . x    . ) |  2 |  * 48  *  *  * |  1  0  2  0  0  0  0 | 2 0 1  0
sefa( x3β .    . ) |  2 |  *  * 96  *  * |  0  1  0  0  1  1  0 | 1 1 0  1
sefa( . β3x    . ) |  2 |  *  *  * 96  * |  0  0  1  0  1  0  1 | 1 0 1  1
sefa( . β . *b3o ) |  2 |  *  *  *  * 96 |  0  0  0  1  0  1  1 | 0 1 1  1
-------------------+----+----------------+----------------------+---------
both( x . x    . ) |  4 |  2  2  0  0  0 | 24  *  *  *  *  *  * | 2 0 0  0
x3β .    .   ♦  6 |  3  0  3  0  0 |  * 32  *  *  *  *  * | 1 1 0  0
. β3x    .   ♦  6 |  0  3  0  3  0 |  *  * 32  *  *  *  * | 1 0 1  0
. β . *b3o   ♦  3 |  0  0  0  0  3 |  *  *  * 32  *  *  * | 0 1 1  0
sefa( x3β3x    . ) |  4 |  0  0  2  2  0 |  *  *  *  * 48  *  * | 1 0 0  1
sefa( x3β . *b3o ) |  4 |  0  0  2  0  2 |  *  *  *  *  * 48  * | 0 1 0  1
sefa( . β3x *b3o ) |  4 |  0  0  0  2  2 |  *  *  *  *  *  * 48 | 0 0 1  1
-------------------+----+----------------+----------------------+---------
x3β3x    .   ♦ 24 | 12 12 12 12  0 |  6  4  4  0  6  0  0 | 8 * *  *
x3β . *b3o   ♦ 12 |  6  0 12  0 12 |  0  4  0  4  0  6  0 | * 8 *  *
. β3x *b3o   ♦ 12 |  0  6  0 12 12 |  0  0  4  4  0  0  6 | * * 8  *
sefa( x3β3x *b3o ) ♦  8 |  0  0  4  4  4 |  0  0  0  0  2  2  2 | * * * 24

starting figure: x3x3x *b3o
```