Acronym pattin
Name prismatotruncated penteract,
runcitruncated penteract
Circumradius sqrt[25+12 sqrt(2)]/2 = 3.239235
Vertex figure
 ©
Lace city
in approx. ASCII-art
 ©  
o3x4x x3x4x x3o4w    x3o4w x3x4x o3x4x		-- x3o3x4x (proh)
                                      
                                      
x3x4x o3u4x o3x4w    o3x4w o3u4x x3x4x		-- o3x3x4x (grit)
                                      
                                      
x3o4w o3x4w                o3x4w x3o4w		-- o3x3o4w ((x,w)-srit)
                                      
                                      
                                      
                                      
x3o4w o3x4w                o3x4w x3o4w		-- o3x3o4w ((x,w)-srit)
                                      
                                      
x3x4x o3u4x o3x4w    o3x4w o3u4x x3x4x		-- o3x3x4x (grit)
                                      
                                      
o3x4x x3x4x x3o4w    x3o4w x3x4x o3x4x		-- x3o3x4x (proh)
Coordinates ((1+2 sqrt(2))/2, (1+2 sqrt(2))/2, (1+sqrt(2))/2, (1+sqrt(2))/2, 1/2)   & all permutations, all changes of sign
General of army (is itself convex)
Colonel of regiment (is itself locally convex – uniform polyteral members:
by facets: grit ope proh rawvtip siphado srip todip
sroptin 10800321000
pattin 08010003280
& others)
Face vector 960, 3360, 3760, 1560, 202
Confer
general polytopal classes:
Wythoffian polytera  
External
links
wikipedia   polytopewiki  

As abstract polyteron pattin is isomorph to quiptin, thereby replacing octagons by octagrams, resp. op by stop and tic by quith, resp. todip by tistodip and proh by quiproh.


Incidence matrix according to Dynkin symbol

o3x3o3x4x

. . . . . | 960 |    4   2   1 |   2   2   4   4   1   2 |   1   2   2   2   2   4  1 |  1  1  2  2
----------+-----+--------------+-------------------------+----------------------------+------------
. x . . . |   2 | 1920   *   * |   1   1   1   1   0   0 |   1   1   1   1   1   1  0 |  1  1  1  1
. . . x . |   2 |    * 960   * |   0   0   2   0   1   1 |   0   1   0   2   0   2  1 |  1  0  1  2
. . . . x |   2 |    *   * 480 |   0   0   0   4   0   2 |   0   0   2   0   2   4  1 |  0  1  2  2
----------+-----+--------------+-------------------------+----------------------------+------------
o3x . . . |   3 |    3   0   0 | 640   *   *   *   *   * |   1   1   1   0   0   0  0 |  1  1  1  0
. x3o . . |   3 |    3   0   0 |   * 640   *   *   *   * |   1   0   0   1   1   0  0 |  1  1  0  1
. x . x . |   4 |    2   2   0 |   *   * 960   *   *   * |   0   1   0   1   0   1  0 |  1  0  1  1
. x . . x |   4 |    2   0   2 |   *   *   * 960   *   * |   0   0   1   0   1   1  0 |  0  1  1  1
. . o3x . |   3 |    0   3   0 |   *   *   *   * 320   * |   0   0   0   2   0   0  1 |  1  0  0  2
. . . x4x |   8 |    0   4   4 |   *   *   *   *   * 240 |   0   0   0   0   0   2  1 |  0  0  1  2
----------+-----+--------------+-------------------------+----------------------------+------------
o3x3o . .    6 |   12   0   0 |   4   4   0   0   0   0 | 160   *   *   *   *   *  * |  1  1  0  0
o3x . x .    6 |    6   3   0 |   2   0   3   0   0   0 |   * 320   *   *   *   *  * |  1  0  1  0
o3x . . x    6 |    6   0   3 |   2   0   0   3   0   0 |   *   * 320   *   *   *  * |  0  1  1  0
. x3o3x .   12 |   12  12   0 |   0   4   6   0   4   0 |   *   *   * 160   *   *  * |  1  0  0  1
. x3o . x    6 |    6   0   3 |   0   2   0   3   0   0 |   *   *   *   * 320   *  * |  0  1  0  1
. x . x4x   16 |    8   8   8 |   0   0   4   4   2   2 |   *   *   *   *   * 240  * |  0  0  1  1
. . o3x4x   24 |    0  24  12 |   0   0   0   0   8   6 |   *   *   *   *   *   * 40 |  0  0  0  2
----------+-----+--------------+-------------------------+----------------------------+------------
o3x3o3x .   30 |   60  30   0 |  20  20  30   0  10   0 |   5  10   0   5   0   0  0 | 32  *  *  *
o3x3o . x   12 |   24   0   6 |   8   8   0  12   0   0 |   2   0   4   0   4   0  0 |  * 80  *  *
o3x . x4x   24 |   24  12  12 |   8   0  12  12   0   3 |   0   4   4   0   0   3  0 |  *  * 80  *
. x3o3x4x  192 |  192 192  96 |   0  64  96  96  64  48 |   0   0   0  16  32  24  8 |  *  *  * 10

snubbed forms: o3x3o3x4s

xoooox3oxxxxo3xxooxx4xxwwxx&#xt   → height(1,2) = height(2,3) = height(4,5) = height(5,6) = 1/sqrt(2) = 0.707107
                                    height(3,4) = 1
(proh || pseudo grit || pseudo (x,w)-srit || (x,w)-srit || pseudo grit || proh)

...

© 2004-2025
top of page