Acronym quiptin
Name quasiprismatotruncated penteract
Circumradius sqrt[25-12 sqrt(2)]/2 = 1.416813
Coordinates ((2 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – uniform polyteral members:
by cells: gaqrit girpith ope quiproh sirdop srip tistodip
gloptin 10100032080
quiptin 00801003280
& others)
Face vector 960, 3360, 3760, 1560, 202
Confer
general polytopal classes:
Wythoffian polytera  
External
links
polytopewiki

As abstract polyteron quiptin is isomorph to pattin, thereby replacing octagrams by octagons, resp. stop by op and quith by tic, resp. tistodip by todip and quiproh by proh.


Incidence matrix according to Dynkin symbol

o3x3o3x4/3x

. . . .   . | 960 |    4   2   1 |   2   2   4   4   1   2 |   1   2   2   2   2   4  1 |  1  1  2  2
------------+-----+--------------+-------------------------+----------------------------+------------
. x . .   . |   2 | 1920   *   * |   1   1   1   1   0   0 |   1   1   1   1   1   1  0 |  1  1  1  1
. . . x   . |   2 |    * 960   * |   0   0   2   0   1   1 |   0   1   0   2   0   2  1 |  1  0  1  2
. . . .   x |   2 |    *   * 480 |   0   0   0   4   0   2 |   0   0   2   0   2   4  1 |  0  1  2  2
------------+-----+--------------+-------------------------+----------------------------+------------
o3x . .   . |   3 |    3   0   0 | 640   *   *   *   *   * |   1   1   1   0   0   0  0 |  1  1  1  0
. x3o .   . |   3 |    3   0   0 |   * 640   *   *   *   * |   1   0   0   1   1   0  0 |  1  1  0  1
. x . x   . |   4 |    2   2   0 |   *   * 960   *   *   * |   0   1   0   1   0   1  0 |  1  0  1  1
. x . .   x |   4 |    2   0   2 |   *   *   * 960   *   * |   0   0   1   0   1   1  0 |  0  1  1  1
. . o3x   . |   3 |    0   3   0 |   *   *   *   * 320   * |   0   0   0   2   0   0  1 |  1  0  0  2
. . . x4/3x |   8 |    0   4   4 |   *   *   *   *   * 240 |   0   0   0   0   0   2  1 |  0  0  1  2
------------+-----+--------------+-------------------------+----------------------------+------------
o3x3o .   .    6 |   12   0   0 |   4   4   0   0   0   0 | 160   *   *   *   *   *  * |  1  1  0  0
o3x . x   .    6 |    6   3   0 |   2   0   3   0   0   0 |   * 320   *   *   *   *  * |  1  0  1  0
o3x . .   x    6 |    6   0   3 |   2   0   0   3   0   0 |   *   * 320   *   *   *  * |  0  1  1  0
. x3o3x   .   12 |   12  12   0 |   0   4   6   0   4   0 |   *   *   * 160   *   *  * |  1  0  0  1
. x3o .   x    6 |    6   0   3 |   0   2   0   3   0   0 |   *   *   *   * 320   *  * |  0  1  0  1
. x . x4/3x   16 |    8   8   8 |   0   0   4   4   2   2 |   *   *   *   *   * 240  * |  0  0  1  1
. . o3x4/3x   24 |    0  24  12 |   0   0   0   0   8   6 |   *   *   *   *   *   * 40 |  0  0  0  2
------------+-----+--------------+-------------------------+----------------------------+------------
o3x3o3x   .   30 |   60  30   0 |  20  20  30   0  10   0 |   5  10   0   5   0   0  0 | 32  *  *  *
o3x3o .   x   12 |   24   0   6 |   8   8   0  12   0   0 |   2   0   4   0   4   0  0 |  * 80  *  *
o3x . x4/3x   24 |   24  12  12 |   8   0  12  12   0   3 |   0   4   4   0   0   3  0 |  *  * 80  *
. x3o3x4/3x  192 |  192 192  96 |   0  64  96  96  64  48 |   0   0   0  16  32  24  8 |  *  *  * 10

© 2004-2024
top of page