Acronym | quiptin | ||||||||||||||||||||||||
Name | quasiprismatotruncated penteract | ||||||||||||||||||||||||
Circumradius | sqrt[25-12 sqrt(2)]/2 = 1.416813 | ||||||||||||||||||||||||
Coordinates | ((2 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2) & all permutations, all changes of sign | ||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| ||||||||||||||||||||||||
Face vector | 960, 3360, 3760, 1560, 202 | ||||||||||||||||||||||||
Confer |
| ||||||||||||||||||||||||
External links |
As abstract polyteron quiptin is isomorph to pattin, thereby replacing octagrams by octagons, resp. stop by op and quith by tic, resp. tistodip by todip and quiproh by proh.
Incidence matrix according to Dynkin symbol
o3x3o3x4/3x . . . . . | 960 | 4 2 1 | 2 2 4 4 1 2 | 1 2 2 2 2 4 1 | 1 1 2 2 ------------+-----+--------------+-------------------------+----------------------------+------------ . x . . . | 2 | 1920 * * | 1 1 1 1 0 0 | 1 1 1 1 1 1 0 | 1 1 1 1 . . . x . | 2 | * 960 * | 0 0 2 0 1 1 | 0 1 0 2 0 2 1 | 1 0 1 2 . . . . x | 2 | * * 480 | 0 0 0 4 0 2 | 0 0 2 0 2 4 1 | 0 1 2 2 ------------+-----+--------------+-------------------------+----------------------------+------------ o3x . . . | 3 | 3 0 0 | 640 * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 . x3o . . | 3 | 3 0 0 | * 640 * * * * | 1 0 0 1 1 0 0 | 1 1 0 1 . x . x . | 4 | 2 2 0 | * * 960 * * * | 0 1 0 1 0 1 0 | 1 0 1 1 . x . . x | 4 | 2 0 2 | * * * 960 * * | 0 0 1 0 1 1 0 | 0 1 1 1 . . o3x . | 3 | 0 3 0 | * * * * 320 * | 0 0 0 2 0 0 1 | 1 0 0 2 . . . x4/3x | 8 | 0 4 4 | * * * * * 240 | 0 0 0 0 0 2 1 | 0 0 1 2 ------------+-----+--------------+-------------------------+----------------------------+------------ o3x3o . . ♦ 6 | 12 0 0 | 4 4 0 0 0 0 | 160 * * * * * * | 1 1 0 0 o3x . x . ♦ 6 | 6 3 0 | 2 0 3 0 0 0 | * 320 * * * * * | 1 0 1 0 o3x . . x ♦ 6 | 6 0 3 | 2 0 0 3 0 0 | * * 320 * * * * | 0 1 1 0 . x3o3x . ♦ 12 | 12 12 0 | 0 4 6 0 4 0 | * * * 160 * * * | 1 0 0 1 . x3o . x ♦ 6 | 6 0 3 | 0 2 0 3 0 0 | * * * * 320 * * | 0 1 0 1 . x . x4/3x ♦ 16 | 8 8 8 | 0 0 4 4 2 2 | * * * * * 240 * | 0 0 1 1 . . o3x4/3x ♦ 24 | 0 24 12 | 0 0 0 0 8 6 | * * * * * * 40 | 0 0 0 2 ------------+-----+--------------+-------------------------+----------------------------+------------ o3x3o3x . ♦ 30 | 60 30 0 | 20 20 30 0 10 0 | 5 10 0 5 0 0 0 | 32 * * * o3x3o . x ♦ 12 | 24 0 6 | 8 8 0 12 0 0 | 2 0 4 0 4 0 0 | * 80 * * o3x . x4/3x ♦ 24 | 24 12 12 | 8 0 12 12 0 3 | 0 4 4 0 0 3 0 | * * 80 * . x3o3x4/3x ♦ 192 | 192 192 96 | 0 64 96 96 64 48 | 0 0 0 16 32 24 8 | * * * 10
© 2004-2025 | top of page |