Acronym cogrin (old: gocrin)
Name celligreatorhombated penteract
(great cellirhombated penteract),
stericantitruncated penteract
Field of sections
` ©`
Vertex figure
` ©    ©`
Coordinates ((1+3 sqrt(2))/2, (1+2 sqrt(2))/2, (1+2 sqrt(2))/2, (1+sqrt(2))/2, 1/2)   & all permutations, all changes of sign
General of army (is itself convex)
Colonel of regiment (is itself locally convex – uniform polyteral members:
 by cells: cope gidpith gircope grit ohope pittip prip todip cogrin 80 0 40 10 0 0 32 80 srocgrin 0 10 0 10 80 32 0 80
& others)
Confer
related segmentotera:
gritta gidpith
External

As abstract polytope cogrin is isomorphic to quacgarn, thereby replacing octagons by octagrams, resp. op by stop and girco by quitco, resp. todip by tistodip, gircope by quitcope, and grit by gaqrit.

Incidence matrix according to Dynkin symbol

```x3o3x3x4x

. . . . . | 1920 |    2    2   1   1 |   1   2   2   2   1   2   2   1 |   1   1   1   2   2   2   1   1  2 |  1  1  1  2  1
----------+------+-------------------+---------------------------------+------------------------------------+---------------
x . . . . |    2 | 1920    *   *   * |   1   1   1   1   0   0   0   0 |   1   1   1   1   1   1   0   0  0 |  1  1  1  1  0
. . x . . |    2 |    * 1920   *   * |   0   1   0   0   1   1   1   0 |   1   0   0   1   1   0   1   1  1 |  1  1  0  1  1
. . . x . |    2 |    *    * 960   * |   0   0   2   0   0   2   0   1 |   0   1   0   2   0   2   1   0  2 |  1  0  1  2  1
. . . . x |    2 |    *    *   * 960 |   0   0   0   2   0   0   2   1 |   0   0   1   0   2   2   0   1  2 |  0  1  1  2  1
----------+------+-------------------+---------------------------------+------------------------------------+---------------
x3o . . . |    3 |    3    0   0   0 | 640   *   *   *   *   *   *   * |   1   1   1   0   0   0   0   0  0 |  1  1  1  0  0
x . x . . |    4 |    2    2   0   0 |   * 960   *   *   *   *   *   * |   1   0   0   1   1   0   0   0  0 |  1  1  0  1  0
x . . x . |    4 |    2    0   2   0 |   *   * 960   *   *   *   *   * |   0   1   0   1   0   1   0   0  0 |  1  0  1  1  0
x . . . x |    4 |    2    0   0   2 |   *   *   * 960   *   *   *   * |   0   0   1   0   1   1   0   0  0 |  0  1  1  1  0
. o3x . . |    3 |    0    3   0   0 |   *   *   *   * 640   *   *   * |   1   0   0   0   0   0   1   1  0 |  1  1  0  0  1
. . x3x . |    6 |    0    3   3   0 |   *   *   *   *   * 640   *   * |   0   0   0   1   0   0   1   0  1 |  1  0  0  1  1
. . x . x |    4 |    0    2   0   2 |   *   *   *   *   *   * 960   * |   0   0   0   0   1   0   0   1  1 |  0  1  0  1  1
. . . x4x |    8 |    0    0   4   4 |   *   *   *   *   *   *   * 240 |   0   0   0   0   0   2   0   0  2 |  0  0  1  2  1
----------+------+-------------------+---------------------------------+------------------------------------+---------------
x3o3x . . ♦   12 |   12   12   0   0 |   4   6   0   0   4   0   0   0 | 160   *   *   *   *   *   *   *  * |  1  1  0  0  0
x3o . x . ♦    6 |    6    0   3   0 |   2   0   3   0   0   0   0   0 |   * 320   *   *   *   *   *   *  * |  1  0  1  0  0
x3o . . x ♦    6 |    6    0   0   3 |   2   0   0   3   0   0   0   0 |   *   * 320   *   *   *   *   *  * |  0  1  1  0  0
x . x3x . ♦   12 |    6    6   6   0 |   0   3   3   0   0   2   0   0 |   *   *   * 320   *   *   *   *  * |  1  0  0  1  0
x . x . x ♦    8 |    4    4   0   4 |   0   2   0   2   0   0   2   0 |   *   *   *   * 480   *   *   *  * |  0  1  0  1  0
x . . x4x ♦   16 |    8    0   8   8 |   0   0   4   4   0   0   0   2 |   *   *   *   *   * 240   *   *  * |  0  0  1  1  0
. o3x3x . ♦   12 |    0   12   6   0 |   0   0   0   0   4   4   0   0 |   *   *   *   *   *   * 160   *  * |  1  0  0  0  1
. o3x . x ♦    6 |    0    6   0   3 |   0   0   0   0   2   0   3   0 |   *   *   *   *   *   *   * 320  * |  0  1  0  0  1
. . x3x4x ♦   48 |    0   24  24  24 |   0   0   0   0   0   8  12   6 |   *   *   *   *   *   *   *   * 80 |  0  0  0  1  1
----------+------+-------------------+---------------------------------+------------------------------------+---------------
x3o3x3x . ♦   60 |   60   60  30   0 |  20  30  30   0  20  20   0   0 |   5  10   0  10   0   0   5   0  0 | 32  *  *  *  *
x3o3x . x ♦   24 |   24   24   0  12 |   8  12   0  12   8   0  12   0 |   2   0   4   0   6   0   0   4  0 |  * 80  *  *  *
x3o . x4x ♦   24 |   24    0  12  12 |   8   0  12  12   0   0   0   3 |   0   4   4   0   0   3   0   0  0 |  *  * 80  *  *
x . x3x4x ♦   96 |   48   48  48  48 |   0  24  24  24   0  16  24  12 |   0   0   0   8  12   6   0   0  2 |  *  *  * 40  *
. o3x3x4x ♦  192 |    0  192  96  96 |   0   0   0   0  64  64  96  24 |   0   0   0   0   0   0  16  32  8 |  *  *  *  * 10

snubbed forms: x3o3x3x4s
```