Acronym pirt
Name prismatorhombated triacontiditeron,
runcicantellated pentacross
Field of sections
 ©
Circumradius 3
Vertex figure
 ©    ©
Coordinates (3/sqrt(2), sqrt(2), sqrt(2), 1/sqrt(2), 0)   & all permutations, all changes of sign
General of army (is itself convex)
Colonel of regiment (is itself locally convex – uniform polyteral members:
by facets: pittip prip tah tico tisdip tope
repirt 3201010800
pirt 0321008040
& others)
Face vector 960, 2880, 2960, 1200, 162
Confer
related segmentotera:
tahatico  
general polytopal classes:
Wythoffian polytera   lace simplices   partial Stott expansions  
External
links
hedrondude   wikipedia   polytopewiki  

Incidence matrix according to Dynkin symbol

x3o3x3x4o

. . . . . | 960 |   2   2   2 |   1   2   4   1   4   1 |  1   2   4   2   2  2 |  2  1  2  1
----------+-----+-------------+-------------------------+-----------------------+------------
x . . . . |   2 | 960   *   * |   1   1   2   0   0   0 |  1   2   2   1   0  0 |  2  1  1  0
. . x . . |   2 |   * 960   * |   0   1   0   1   2   0 |  1   0   2   0   2  1 |  2  0  1  1
. . . x . |   2 |   *   * 960 |   0   0   2   0   2   1 |  0   1   2   2   1  2 |  1  1  2  1
----------+-----+-------------+-------------------------+-----------------------+------------
x3o . . . |   3 |   3   0   0 | 320   *   *   *   *   * |  1   2   0   0   0  0 |  2  1  0  0
x . x . . |   4 |   2   2   0 |   * 480   *   *   *   * |  1   0   2   0   0  0 |  2  0  1  0
x . . x . |   4 |   2   0   2 |   *   * 960   *   *   * |  0   1   1   1   0  0 |  1  1  1  0
. o3x . . |   3 |   0   3   0 |   *   *   * 320   *   * |  1   0   0   0   2  0 |  2  0  0  1
. . x3x . |   6 |   0   3   3 |   *   *   *   * 640   * |  0   0   1   0   1  1 |  1  0  1  1
. . . x4o |   4 |   0   0   4 |   *   *   *   *   * 240 |  0   0   0   2   0  2 |  0  1  2  1
----------+-----+-------------+-------------------------+-----------------------+------------
x3o3x . .   12 |  12  12   0 |   4   6   0   4   0   0 | 80   *   *   *   *  * |  2  0  0  0
x3o . x .    6 |   6   0   3 |   2   0   3   0   0   0 |  * 320   *   *   *  * |  1  1  0  0
x . x3x .   12 |   6   6   6 |   0   3   3   0   2   0 |  *   * 320   *   *  * |  1  0  1  0
x . . x4o    8 |   4   0   8 |   0   0   4   0   0   2 |  *   *   * 240   *  * |  0  1  1  0
. o3x3x .   12 |   0  12   6 |   0   0   0   4   4   0 |  *   *   *   * 160  * |  1  0  0  1
. . x3x4o   24 |   0  12  24 |   0   0   0   0   8   6 |  *   *   *   *   * 80 |  0  0  1  1
----------+-----+-------------+-------------------------+-----------------------+------------
x3o3x3x .   60 |  60  60  30 |  20  30  30  20  20   0 |  5  10  10   0   5  0 | 32  *  *  *
x3o . x4o   12 |  12   0  12 |   4   0  12   0   0   3 |  0   4   0   3   0  0 |  * 80  *  *
x . x3x4o   48 |  24  24  48 |   0  12  24   0  16  12 |  0   0   8   6   0  2 |  *  * 40  *
. o3x3x4o   96 |   0  96  96 |   0   0   0  32  64  24 |  0   0   0   0  16  8 |  *  *  * 10

x3o3x3x4/3o

. . . .   . | 960 |   2   2   2 |   1   2   4   1   4   1 |  1   2   4   2   2  2 |  2  1  2  1
------------+-----+-------------+-------------------------+-----------------------+------------
x . . .   . |   2 | 960   *   * |   1   1   2   0   0   0 |  1   2   2   1   0  0 |  2  1  1  0
. . x .   . |   2 |   * 960   * |   0   1   0   1   2   0 |  1   0   2   0   2  1 |  2  0  1  1
. . . x   . |   2 |   *   * 960 |   0   0   2   0   2   1 |  0   1   2   2   1  2 |  1  1  2  1
------------+-----+-------------+-------------------------+-----------------------+------------
x3o . .   . |   3 |   3   0   0 | 320   *   *   *   *   * |  1   2   0   0   0  0 |  2  1  0  0
x . x .   . |   4 |   2   2   0 |   * 480   *   *   *   * |  1   0   2   0   0  0 |  2  0  1  0
x . . x   . |   4 |   2   0   2 |   *   * 960   *   *   * |  0   1   1   1   0  0 |  1  1  1  0
. o3x .   . |   3 |   0   3   0 |   *   *   * 320   *   * |  1   0   0   0   2  0 |  2  0  0  1
. . x3x   . |   6 |   0   3   3 |   *   *   *   * 640   * |  0   0   1   0   1  1 |  1  0  1  1
. . . x4/3o |   4 |   0   0   4 |   *   *   *   *   * 240 |  0   0   0   2   0  2 |  0  1  2  1
------------+-----+-------------+-------------------------+-----------------------+------------
x3o3x .   .   12 |  12  12   0 |   4   6   0   4   0   0 | 80   *   *   *   *  * |  2  0  0  0
x3o . x   .    6 |   6   0   3 |   2   0   3   0   0   0 |  * 320   *   *   *  * |  1  1  0  0
x . x3x   .   12 |   6   6   6 |   0   3   3   0   2   0 |  *   * 320   *   *  * |  1  0  1  0
x . . x4/3o    8 |   4   0   8 |   0   0   4   0   0   2 |  *   *   * 240   *  * |  0  1  1  0
. o3x3x   .   12 |   0  12   6 |   0   0   0   4   4   0 |  *   *   *   * 160  * |  1  0  0  1
. . x3x4/3o   24 |   0  12  24 |   0   0   0   0   8   6 |  *   *   *   *   * 80 |  0  0  1  1
------------+-----+-------------+-------------------------+-----------------------+------------
x3o3x3x   .   60 |  60  60  30 |  20  30  30  20  20   0 |  5  10  10   0   5  0 | 32  *  *  *
x3o . x4/3o   12 |  12   0  12 |   4   0  12   0   0   3 |  0   4   0   3   0  0 |  * 80  *  *
x . x3x4/3o   48 |  24  24  48 |   0  12  24   0  16  12 |  0   0   8   6   0  2 |  *  * 40  *
. o3x3x4/3o   96 |   0  96  96 |   0   0   0  32  64  24 |  0   0   0   0  16  8 |  *  *  * 10

x3x3x *b3o3x

. . .    . . | 960 |   1   2   1   2 |   2   1   2   2   1   2   2   1 |  2  1   2   2   1  1   2  1   1 |  1  2  1  1  1
-------------+-----+-----------------+---------------------------------+---------------------------------+---------------
x . .    . . |   2 | 480   *   *   * |   2   1   2   0   0   0   0   0 |  2  1   2   2   1  0   0  0   0 |  1  2  1  1  0
. x .    . . |   2 |   * 960   *   * |   1   0   0   1   1   1   0   0 |  1  1   1   0   0  1   1  1   0 |  1  1  1  0  1
. . x    . . |   2 |   *   * 480   * |   0   1   0   2   0   0   2   0 |  2  0   0   2   0  1   2  0   1 |  1  2  0  1  1
. . .    . x |   2 |   *   *   * 960 |   0   0   1   0   0   1   1   1 |  0  0   1   1   1  0   1  1   1 |  0  1  1  1  1
-------------+-----+-----------------+---------------------------------+---------------------------------+---------------
x3x .    . . |   6 |   3   3   0   0 | 320   *   *   *   *   *   *   * |  1  1   1   0   0  0   0  0   0 |  1  1  1  0  0
x . x    . . |   4 |   2   0   2   0 |   * 240   *   *   *   *   *   * |  2  0   0   2   0  0   0  0   0 |  1  2  0  1  0
x . .    . x |   4 |   2   0   0   2 |   *   * 480   *   *   *   *   * |  0  0   1   1   1  0   0  0   0 |  0  1  1  1  0
. x3x    . . |   6 |   0   3   3   0 |   *   *   * 320   *   *   *   * |  1  0   0   0   0  1   1  0   0 |  1  1  0  0  1
. x . *b3o . |   3 |   0   3   0   0 |   *   *   *   * 320   *   *   * |  0  1   0   0   0  1   0  1   0 |  1  0  1  0  1
. x .    . x |   4 |   0   2   0   2 |   *   *   *   *   * 480   *   * |  0  0   1   0   0  0   1  1   0 |  0  1  1  0  1
. . x    . x |   4 |   0   0   2   2 |   *   *   *   *   *   * 480   * |  0  0   0   1   0  0   1  0   1 |  0  1  0  1  1
. . .    o3x |   3 |   0   0   0   3 |   *   *   *   *   *   *   * 320 |  0  0   0   0   1  0   0  1   1 |  0  0  1  1  1
-------------+-----+-----------------+---------------------------------+---------------------------------+---------------
x3x3x    . .   24 |  12  12  12   0 |   4   6   0   4   0   0   0   0 | 80  *   *   *   *  *   *  *   * |  1  1  0  0  0
x3x . *b3o .   12 |   6  12   0   0 |   4   0   0   0   4   0   0   0 |  * 80   *   *   *  *   *  *   * |  1  0  1  0  0
x3x .    . x   12 |   6   6   0   6 |   2   0   3   0   0   3   0   0 |  *  * 160   *   *  *   *  *   * |  0  1  1  0  0
x . x    . x    8 |   4   0   4   4 |   0   2   2   0   0   0   2   0 |  *  *   * 240   *  *   *  *   * |  0  1  0  1  0
x . .    o3x    6 |   3   0   0   6 |   0   0   3   0   0   0   0   2 |  *  *   *   * 160  *   *  *   * |  0  0  1  1  0
. x3x *b3o .   12 |   0  12   6   0 |   0   0   0   4   4   0   0   0 |  *  *   *   *   * 80   *  *   * |  1  0  0  0  1
. x3x    . x   12 |   0   6   6   6 |   0   0   0   2   0   3   3   0 |  *  *   *   *   *  * 160  *   * |  0  1  0  0  1
. x . *b3o3x   12 |   0  12   0  12 |   0   0   0   0   4   6   0   4 |  *  *   *   *   *  *   * 80   * |  0  0  1  0  1
. . x    o3x    6 |   0   0   3   6 |   0   0   0   0   0   0   3   2 |  *  *   *   *   *  *   *  * 160 |  0  0  0  1  1
-------------+-----+-----------------+---------------------------------+---------------------------------+---------------
x3x3x *b3o .   96 |  48  96  48   0 |  32  24   0  32  32   0   0   0 |  8  8   0   0   0  8   0  0   0 | 10  *  *  *  *
x3x3x    . x   48 |  24  24  24  24 |   8  12  12   8   0  12  12   0 |  2  0   4   6   0  0   4  0   0 |  * 40  *  *  *
x3x . *b3o3x   60 |  30  60   0  60 |  20   0  30   0  20  30   0  20 |  0  5  10   0  10  0   0  5   0 |  *  * 16  *  *
x . x    o3x   12 |   6   0   6  12 |   0   3   6   0   0   0   6   4 |  0  0   0   3   2  0   0  0   2 |  *  *  * 80  *
. x3x *b3o3x   60 |   0  60  30  60 |   0   0   0  20  20  30  30  20 |  0  0   0   0   0  5  10  5  10 |  *  *  *  * 16

x3o3x3x4s

demi( . . . . . ) | 960 |   2   2   1   1 |   1   2   2   1   2   1   2   2 |  1   1   2  1   2  2   1   2  1 |  1  1  2  1  1
------------------+-----+-----------------+---------------------------------+---------------------------------+---------------
demi( x . . . . ) |   2 | 960   *   *   * |   1   1   1   0   0   0   1   0 |  1   1   1  0   1  0   1   1  0 |  1  1  1  0  1
demi( . . x . . ) |   2 |   * 960   *   * |   0   1   0   1   1   0   0   1 |  1   0   1  1   0  1   0   1  1 |  1  0  1  1  1
demi( . . . x . ) |   2 |   *   * 480   * |   0   0   2   0   2   1   0   0 |  0   1   2  1   2  2   0   0  0 |  1  1  2  1  0
sefa( . . . x4s ) |   2 |   *   *   * 480 |   0   0   0   0   0   1   2   2 |  0   0   0  0   2  2   1   2  1 |  0  1  2  1  1
------------------+-----+-----------------+---------------------------------+---------------------------------+---------------
demi( x3o . . . ) |   3 |   3   0   0   0 | 320   *   *   *   *   *   *   * |  1   1   0  0   0  0   1   0  0 |  1  1  0  0  1
demi( x . x . . ) |   4 |   2   2   0   0 |   * 480   *   *   *   *   *   * |  1   0   1  0   0  0   0   1  0 |  1  0  1  0  1
demi( x . . x . ) |   4 |   2   0   2   0 |   *   * 480   *   *   *   *   * |  0   1   1  0   1  0   0   0  0 |  1  1  1  0  0
demi( . o3x . . ) |   3 |   0   3   0   0 |   *   *   * 320   *   *   *   * |  1   0   0  1   0  0   0   0  1 |  1  0  0  1  1
demi( . . x3x . ) |   6 |   0   3   3   0 |   *   *   *   * 320   *   *   * |  0   0   1  1   0  1   0   0  0 |  1  0  1  1  0
      . . . x4s   |   4 |   0   0   2   2 |   *   *   *   *   * 240   *   * |  0   0   0  0   2  2   0   0  0 |  0  1  2  1  0
sefa( x 2 . x4s ) |   4 |   2   0   0   2 |   *   *   *   *   *   * 480   * |  0   0   0  0   1  0   1   1  0 |  0  1  1  0  1
sefa( . . x3x4s ) |   6 |   0   3   0   3 |   *   *   *   *   *   *   * 320 |  0   0   0  0   0  1   0   1  1 |  0  0  1  1  1
------------------+-----+-----------------+---------------------------------+---------------------------------+---------------
demi( x3o3x . . )   12 |  12  12   0   0 |   4   6   0   4   0   0   0   0 | 80   *   *  *   *  *   *   *  * |  1  0  0  0  1
demi( x3o . x . )    6 |   6   0   3   0 |   2   0   3   0   0   0   0   0 |  * 160   *  *   *  *   *   *  * |  1  1  0  0  0
demi( x . x3x . )   12 |   6   6   6   0 |   0   3   3   0   2   0   0   0 |  *   * 160  *   *  *   *   *  * |  1  0  1  0  0
demi( . o3x3x . )   12 |   0  12   6   0 |   0   0   0   4   4   0   0   0 |  *   *   * 80   *  *   *   *  * |  1  0  0  1  0
      x 2 . x4s      8 |   4   0   4   4 |   0   0   2   0   0   2   2   0 |  *   *   *  * 240  *   *   *  * |  0  1  1  0  0
      . . x3x4s     24 |   0  12  12  12 |   0   0   0   0   4   6   0   4 |  *   *   *  *   * 80   *   *  * |  0  0  1  1  0
sefa( x3o 2 x4s )    6 |   6   0   0   3 |   2   0   0   0   0   0   3   0 |  *   *   *  *   *  * 160   *  * |  0  1  0  0  1
sefa( x 2 x3x4s )   12 |   6   6   0   6 |   0   3   0   0   0   0   3   2 |  *   *   *  *   *  *   * 160  * |  0  0  1  0  1
sefa( . o3x3x4s )   12 |   0  12   0   6 |   0   0   0   4   0   0   0   4 |  *   *   *  *   *  *   *   * 80 |  0  0  0  1  1
------------------+-----+-----------------+---------------------------------+---------------------------------+---------------
demi( x3o3x3x . )   60 |  60  60  30   0 |  20  30  30  20  20   0   0   0 |  5  10  10  5   0  0   0   0  0 | 16  *  *  *  *
      x3o 2 x4s     12 |  12   0   6   6 |   4   0   6   0   0   3   6   0 |  0   2   0  0   3  0   2   0  0 |  * 80  *  *  *
      x 2 x3x4s     48 |  24  24  24  24 |   0  12  12   0   8  12  12   8 |  0   0   4  0   6  2   0   4  0 |  *  * 40  *  *
      . o3x3x4s     96 |   0  96  48  48 |   0   0   0  32  32  24   0  32 |  0   0   0  8   0  8   0   0  8 |  *  *  * 10  *
sefa( x3o3x3x4s )   60 |  60  60   0  30 |  20  30   0  20   0   0  30  20 |  5   0   0  0   0  0  10  10  5 |  *  *  *  * 16

starting figure: x3o3x3x4x

© 2004-2025
top of page