Acronym | pirt | |||||||||||||||||||||
Name |
prismatorhombated triacontiditeron, runcicantellated pentacross | |||||||||||||||||||||
Field of sections |
© | |||||||||||||||||||||
Circumradius | 3 | |||||||||||||||||||||
Vertex figure |
© © | |||||||||||||||||||||
Coordinates | (3/sqrt(2), sqrt(2), sqrt(2), 1/sqrt(2), 0) & all permutations, all changes of sign | |||||||||||||||||||||
General of army | (is itself convex) | |||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| |||||||||||||||||||||
Face vector | 960, 2880, 2960, 1200, 162 | |||||||||||||||||||||
Confer |
| |||||||||||||||||||||
External links |
Incidence matrix according to Dynkin symbol
x3o3x3x4o . . . . . | 960 | 2 2 2 | 1 2 4 1 4 1 | 1 2 4 2 2 2 | 2 1 2 1 ----------+-----+-------------+-------------------------+-----------------------+------------ x . . . . | 2 | 960 * * | 1 1 2 0 0 0 | 1 2 2 1 0 0 | 2 1 1 0 . . x . . | 2 | * 960 * | 0 1 0 1 2 0 | 1 0 2 0 2 1 | 2 0 1 1 . . . x . | 2 | * * 960 | 0 0 2 0 2 1 | 0 1 2 2 1 2 | 1 1 2 1 ----------+-----+-------------+-------------------------+-----------------------+------------ x3o . . . | 3 | 3 0 0 | 320 * * * * * | 1 2 0 0 0 0 | 2 1 0 0 x . x . . | 4 | 2 2 0 | * 480 * * * * | 1 0 2 0 0 0 | 2 0 1 0 x . . x . | 4 | 2 0 2 | * * 960 * * * | 0 1 1 1 0 0 | 1 1 1 0 . o3x . . | 3 | 0 3 0 | * * * 320 * * | 1 0 0 0 2 0 | 2 0 0 1 . . x3x . | 6 | 0 3 3 | * * * * 640 * | 0 0 1 0 1 1 | 1 0 1 1 . . . x4o | 4 | 0 0 4 | * * * * * 240 | 0 0 0 2 0 2 | 0 1 2 1 ----------+-----+-------------+-------------------------+-----------------------+------------ x3o3x . . ♦ 12 | 12 12 0 | 4 6 0 4 0 0 | 80 * * * * * | 2 0 0 0 x3o . x . ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * 320 * * * * | 1 1 0 0 x . x3x . ♦ 12 | 6 6 6 | 0 3 3 0 2 0 | * * 320 * * * | 1 0 1 0 x . . x4o ♦ 8 | 4 0 8 | 0 0 4 0 0 2 | * * * 240 * * | 0 1 1 0 . o3x3x . ♦ 12 | 0 12 6 | 0 0 0 4 4 0 | * * * * 160 * | 1 0 0 1 . . x3x4o ♦ 24 | 0 12 24 | 0 0 0 0 8 6 | * * * * * 80 | 0 0 1 1 ----------+-----+-------------+-------------------------+-----------------------+------------ x3o3x3x . ♦ 60 | 60 60 30 | 20 30 30 20 20 0 | 5 10 10 0 5 0 | 32 * * * x3o . x4o ♦ 12 | 12 0 12 | 4 0 12 0 0 3 | 0 4 0 3 0 0 | * 80 * * x . x3x4o ♦ 48 | 24 24 48 | 0 12 24 0 16 12 | 0 0 8 6 0 2 | * * 40 * . o3x3x4o ♦ 96 | 0 96 96 | 0 0 0 32 64 24 | 0 0 0 0 16 8 | * * * 10
x3o3x3x4/3o . . . . . | 960 | 2 2 2 | 1 2 4 1 4 1 | 1 2 4 2 2 2 | 2 1 2 1 ------------+-----+-------------+-------------------------+-----------------------+------------ x . . . . | 2 | 960 * * | 1 1 2 0 0 0 | 1 2 2 1 0 0 | 2 1 1 0 . . x . . | 2 | * 960 * | 0 1 0 1 2 0 | 1 0 2 0 2 1 | 2 0 1 1 . . . x . | 2 | * * 960 | 0 0 2 0 2 1 | 0 1 2 2 1 2 | 1 1 2 1 ------------+-----+-------------+-------------------------+-----------------------+------------ x3o . . . | 3 | 3 0 0 | 320 * * * * * | 1 2 0 0 0 0 | 2 1 0 0 x . x . . | 4 | 2 2 0 | * 480 * * * * | 1 0 2 0 0 0 | 2 0 1 0 x . . x . | 4 | 2 0 2 | * * 960 * * * | 0 1 1 1 0 0 | 1 1 1 0 . o3x . . | 3 | 0 3 0 | * * * 320 * * | 1 0 0 0 2 0 | 2 0 0 1 . . x3x . | 6 | 0 3 3 | * * * * 640 * | 0 0 1 0 1 1 | 1 0 1 1 . . . x4/3o | 4 | 0 0 4 | * * * * * 240 | 0 0 0 2 0 2 | 0 1 2 1 ------------+-----+-------------+-------------------------+-----------------------+------------ x3o3x . . ♦ 12 | 12 12 0 | 4 6 0 4 0 0 | 80 * * * * * | 2 0 0 0 x3o . x . ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * 320 * * * * | 1 1 0 0 x . x3x . ♦ 12 | 6 6 6 | 0 3 3 0 2 0 | * * 320 * * * | 1 0 1 0 x . . x4/3o ♦ 8 | 4 0 8 | 0 0 4 0 0 2 | * * * 240 * * | 0 1 1 0 . o3x3x . ♦ 12 | 0 12 6 | 0 0 0 4 4 0 | * * * * 160 * | 1 0 0 1 . . x3x4/3o ♦ 24 | 0 12 24 | 0 0 0 0 8 6 | * * * * * 80 | 0 0 1 1 ------------+-----+-------------+-------------------------+-----------------------+------------ x3o3x3x . ♦ 60 | 60 60 30 | 20 30 30 20 20 0 | 5 10 10 0 5 0 | 32 * * * x3o . x4/3o ♦ 12 | 12 0 12 | 4 0 12 0 0 3 | 0 4 0 3 0 0 | * 80 * * x . x3x4/3o ♦ 48 | 24 24 48 | 0 12 24 0 16 12 | 0 0 8 6 0 2 | * * 40 * . o3x3x4/3o ♦ 96 | 0 96 96 | 0 0 0 32 64 24 | 0 0 0 0 16 8 | * * * 10
x3x3x *b3o3x . . . . . | 960 | 1 2 1 2 | 2 1 2 2 1 2 2 1 | 2 1 2 2 1 1 2 1 1 | 1 2 1 1 1 -------------+-----+-----------------+---------------------------------+---------------------------------+--------------- x . . . . | 2 | 480 * * * | 2 1 2 0 0 0 0 0 | 2 1 2 2 1 0 0 0 0 | 1 2 1 1 0 . x . . . | 2 | * 960 * * | 1 0 0 1 1 1 0 0 | 1 1 1 0 0 1 1 1 0 | 1 1 1 0 1 . . x . . | 2 | * * 480 * | 0 1 0 2 0 0 2 0 | 2 0 0 2 0 1 2 0 1 | 1 2 0 1 1 . . . . x | 2 | * * * 960 | 0 0 1 0 0 1 1 1 | 0 0 1 1 1 0 1 1 1 | 0 1 1 1 1 -------------+-----+-----------------+---------------------------------+---------------------------------+--------------- x3x . . . | 6 | 3 3 0 0 | 320 * * * * * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 0 2 0 | * 240 * * * * * * | 2 0 0 2 0 0 0 0 0 | 1 2 0 1 0 x . . . x | 4 | 2 0 0 2 | * * 480 * * * * * | 0 0 1 1 1 0 0 0 0 | 0 1 1 1 0 . x3x . . | 6 | 0 3 3 0 | * * * 320 * * * * | 1 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . *b3o . | 3 | 0 3 0 0 | * * * * 320 * * * | 0 1 0 0 0 1 0 1 0 | 1 0 1 0 1 . x . . x | 4 | 0 2 0 2 | * * * * * 480 * * | 0 0 1 0 0 0 1 1 0 | 0 1 1 0 1 . . x . x | 4 | 0 0 2 2 | * * * * * * 480 * | 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . o3x | 3 | 0 0 0 3 | * * * * * * * 320 | 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 -------------+-----+-----------------+---------------------------------+---------------------------------+--------------- x3x3x . . ♦ 24 | 12 12 12 0 | 4 6 0 4 0 0 0 0 | 80 * * * * * * * * | 1 1 0 0 0 x3x . *b3o . ♦ 12 | 6 12 0 0 | 4 0 0 0 4 0 0 0 | * 80 * * * * * * * | 1 0 1 0 0 x3x . . x ♦ 12 | 6 6 0 6 | 2 0 3 0 0 3 0 0 | * * 160 * * * * * * | 0 1 1 0 0 x . x . x ♦ 8 | 4 0 4 4 | 0 2 2 0 0 0 2 0 | * * * 240 * * * * * | 0 1 0 1 0 x . . o3x ♦ 6 | 3 0 0 6 | 0 0 3 0 0 0 0 2 | * * * * 160 * * * * | 0 0 1 1 0 . x3x *b3o . ♦ 12 | 0 12 6 0 | 0 0 0 4 4 0 0 0 | * * * * * 80 * * * | 1 0 0 0 1 . x3x . x ♦ 12 | 0 6 6 6 | 0 0 0 2 0 3 3 0 | * * * * * * 160 * * | 0 1 0 0 1 . x . *b3o3x ♦ 12 | 0 12 0 12 | 0 0 0 0 4 6 0 4 | * * * * * * * 80 * | 0 0 1 0 1 . . x o3x ♦ 6 | 0 0 3 6 | 0 0 0 0 0 0 3 2 | * * * * * * * * 160 | 0 0 0 1 1 -------------+-----+-----------------+---------------------------------+---------------------------------+--------------- x3x3x *b3o . ♦ 96 | 48 96 48 0 | 32 24 0 32 32 0 0 0 | 8 8 0 0 0 8 0 0 0 | 10 * * * * x3x3x . x ♦ 48 | 24 24 24 24 | 8 12 12 8 0 12 12 0 | 2 0 4 6 0 0 4 0 0 | * 40 * * * x3x . *b3o3x ♦ 60 | 30 60 0 60 | 20 0 30 0 20 30 0 20 | 0 5 10 0 10 0 0 5 0 | * * 16 * * x . x o3x ♦ 12 | 6 0 6 12 | 0 3 6 0 0 0 6 4 | 0 0 0 3 2 0 0 0 2 | * * * 80 * . x3x *b3o3x ♦ 60 | 0 60 30 60 | 0 0 0 20 20 30 30 20 | 0 0 0 0 0 5 10 5 10 | * * * * 16
x3o3x3x4s demi( . . . . . ) | 960 | 2 2 1 1 | 1 2 2 1 2 1 2 2 | 1 1 2 1 2 2 1 2 1 | 1 1 2 1 1 ------------------+-----+-----------------+---------------------------------+---------------------------------+--------------- demi( x . . . . ) | 2 | 960 * * * | 1 1 1 0 0 0 1 0 | 1 1 1 0 1 0 1 1 0 | 1 1 1 0 1 demi( . . x . . ) | 2 | * 960 * * | 0 1 0 1 1 0 0 1 | 1 0 1 1 0 1 0 1 1 | 1 0 1 1 1 demi( . . . x . ) | 2 | * * 480 * | 0 0 2 0 2 1 0 0 | 0 1 2 1 2 2 0 0 0 | 1 1 2 1 0 sefa( . . . x4s ) | 2 | * * * 480 | 0 0 0 0 0 1 2 2 | 0 0 0 0 2 2 1 2 1 | 0 1 2 1 1 ------------------+-----+-----------------+---------------------------------+---------------------------------+--------------- demi( x3o . . . ) | 3 | 3 0 0 0 | 320 * * * * * * * | 1 1 0 0 0 0 1 0 0 | 1 1 0 0 1 demi( x . x . . ) | 4 | 2 2 0 0 | * 480 * * * * * * | 1 0 1 0 0 0 0 1 0 | 1 0 1 0 1 demi( x . . x . ) | 4 | 2 0 2 0 | * * 480 * * * * * | 0 1 1 0 1 0 0 0 0 | 1 1 1 0 0 demi( . o3x . . ) | 3 | 0 3 0 0 | * * * 320 * * * * | 1 0 0 1 0 0 0 0 1 | 1 0 0 1 1 demi( . . x3x . ) | 6 | 0 3 3 0 | * * * * 320 * * * | 0 0 1 1 0 1 0 0 0 | 1 0 1 1 0 . . . x4s | 4 | 0 0 2 2 | * * * * * 240 * * | 0 0 0 0 2 2 0 0 0 | 0 1 2 1 0 sefa( x 2 . x4s ) | 4 | 2 0 0 2 | * * * * * * 480 * | 0 0 0 0 1 0 1 1 0 | 0 1 1 0 1 sefa( . . x3x4s ) | 6 | 0 3 0 3 | * * * * * * * 320 | 0 0 0 0 0 1 0 1 1 | 0 0 1 1 1 ------------------+-----+-----------------+---------------------------------+---------------------------------+--------------- demi( x3o3x . . ) ♦ 12 | 12 12 0 0 | 4 6 0 4 0 0 0 0 | 80 * * * * * * * * | 1 0 0 0 1 demi( x3o . x . ) ♦ 6 | 6 0 3 0 | 2 0 3 0 0 0 0 0 | * 160 * * * * * * * | 1 1 0 0 0 demi( x . x3x . ) ♦ 12 | 6 6 6 0 | 0 3 3 0 2 0 0 0 | * * 160 * * * * * * | 1 0 1 0 0 demi( . o3x3x . ) ♦ 12 | 0 12 6 0 | 0 0 0 4 4 0 0 0 | * * * 80 * * * * * | 1 0 0 1 0 x 2 . x4s ♦ 8 | 4 0 4 4 | 0 0 2 0 0 2 2 0 | * * * * 240 * * * * | 0 1 1 0 0 . . x3x4s ♦ 24 | 0 12 12 12 | 0 0 0 0 4 6 0 4 | * * * * * 80 * * * | 0 0 1 1 0 sefa( x3o 2 x4s ) ♦ 6 | 6 0 0 3 | 2 0 0 0 0 0 3 0 | * * * * * * 160 * * | 0 1 0 0 1 sefa( x 2 x3x4s ) ♦ 12 | 6 6 0 6 | 0 3 0 0 0 0 3 2 | * * * * * * * 160 * | 0 0 1 0 1 sefa( . o3x3x4s ) ♦ 12 | 0 12 0 6 | 0 0 0 4 0 0 0 4 | * * * * * * * * 80 | 0 0 0 1 1 ------------------+-----+-----------------+---------------------------------+---------------------------------+--------------- demi( x3o3x3x . ) ♦ 60 | 60 60 30 0 | 20 30 30 20 20 0 0 0 | 5 10 10 5 0 0 0 0 0 | 16 * * * * x3o 2 x4s ♦ 12 | 12 0 6 6 | 4 0 6 0 0 3 6 0 | 0 2 0 0 3 0 2 0 0 | * 80 * * * x 2 x3x4s ♦ 48 | 24 24 24 24 | 0 12 12 0 8 12 12 8 | 0 0 4 0 6 2 0 4 0 | * * 40 * * . o3x3x4s ♦ 96 | 0 96 48 48 | 0 0 0 32 32 24 0 32 | 0 0 0 8 0 8 0 0 8 | * * * 10 * sefa( x3o3x3x4s ) ♦ 60 | 60 60 0 30 | 20 30 0 20 0 0 30 20 | 5 0 0 0 0 0 10 10 5 | * * * * 16 starting figure: x3o3x3x4x
© 2004-2025 | top of page |