Acronym quacgarn
Name quasicelligreatorhombated penteract
Field of sections
 ©
Circumradius sqrt[41-16 sqrt(2)]/2 = 2.143163
Vertex figure
 ©
Coordinates (3 sqrt(2)-1, 2 sqrt(2)-1, 2 sqrt(2)-1, sqrt(2)-1, 1)/2   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – uniform polyteral members:
by facets: cope gaqrit gaquidpoth ohope pittip prip quitcope tistodip
quacgarn 8010000324080
gorcgrin 0101080320080
& others)
Face vector 1920, 5760, 6000, 2400, 242
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude   polytopewiki  

As abstract polytope quacgarn is isomorphic to cogrin, thereby replacing octagrams by octagons, resp. stop by op and quitco by girco, resp. tistodip by todip, quitcope by gircope, and gaqrit by grit.


Incidence matrix according to Dynkin symbol

x3o3x3x4/3x

. . . .   . | 1920 |    2    2   1   1 |   1   2   2   2   1   2   2   1 |   1   1   1   2   2   2   1   1  2 |  1  1  1  2  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x . . .   . |    2 | 1920    *   *   * |   1   1   1   1   0   0   0   0 |   1   1   1   1   1   1   0   0  0 |  1  1  1  1  0
. . x .   . |    2 |    * 1920   *   * |   0   1   0   0   1   1   1   0 |   1   0   0   1   1   0   1   1  1 |  1  1  0  1  1
. . . x   . |    2 |    *    * 960   * |   0   0   2   0   0   2   0   1 |   0   1   0   2   0   2   1   0  2 |  1  0  1  2  1
. . . .   x |    2 |    *    *   * 960 |   0   0   0   2   0   0   2   1 |   0   0   1   0   2   2   0   1  2 |  0  1  1  2  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3o . .   . |    3 |    3    0   0   0 | 640   *   *   *   *   *   *   * |   1   1   1   0   0   0   0   0  0 |  1  1  1  0  0
x . x .   . |    4 |    2    2   0   0 |   * 960   *   *   *   *   *   * |   1   0   0   1   1   0   0   0  0 |  1  1  0  1  0
x . . x   . |    4 |    2    0   2   0 |   *   * 960   *   *   *   *   * |   0   1   0   1   0   1   0   0  0 |  1  0  1  1  0
x . . .   x |    4 |    2    0   0   2 |   *   *   * 960   *   *   *   * |   0   0   1   0   1   1   0   0  0 |  0  1  1  1  0
. o3x .   . |    3 |    0    3   0   0 |   *   *   *   * 640   *   *   * |   1   0   0   0   0   0   1   1  0 |  1  1  0  0  1
. . x3x   . |    6 |    0    3   3   0 |   *   *   *   *   * 640   *   * |   0   0   0   1   0   0   1   0  1 |  1  0  0  1  1
. . x .   x |    4 |    0    2   0   2 |   *   *   *   *   *   * 960   * |   0   0   0   0   1   0   0   1  1 |  0  1  0  1  1
. . . x4/3x |    8 |    0    0   4   4 |   *   *   *   *   *   *   * 240 |   0   0   0   0   0   2   0   0  2 |  0  0  1  2  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3o3x .   .    12 |   12   12   0   0 |   4   6   0   0   4   0   0   0 | 160   *   *   *   *   *   *   *  * |  1  1  0  0  0
x3o . x   .     6 |    6    0   3   0 |   2   0   3   0   0   0   0   0 |   * 320   *   *   *   *   *   *  * |  1  0  1  0  0
x3o . .   x     6 |    6    0   0   3 |   2   0   0   3   0   0   0   0 |   *   * 320   *   *   *   *   *  * |  0  1  1  0  0
x . x3x   .    12 |    6    6   6   0 |   0   3   3   0   0   2   0   0 |   *   *   * 320   *   *   *   *  * |  1  0  0  1  0
x . x .   x     8 |    4    4   0   4 |   0   2   0   2   0   0   2   0 |   *   *   *   * 480   *   *   *  * |  0  1  0  1  0
x . . x4/3x    16 |    8    0   8   8 |   0   0   4   4   0   0   0   2 |   *   *   *   *   * 240   *   *  * |  0  0  1  1  0
. o3x3x   .    12 |    0   12   6   0 |   0   0   0   0   4   4   0   0 |   *   *   *   *   *   * 160   *  * |  1  0  0  0  1
. o3x .   x     6 |    0    6   0   3 |   0   0   0   0   2   0   3   0 |   *   *   *   *   *   *   * 320  * |  0  1  0  0  1
. . x3x4/3x    48 |    0   24  24  24 |   0   0   0   0   0   8  12   6 |   *   *   *   *   *   *   *   * 80 |  0  0  0  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3o3x3x   .    60 |   60   60  30   0 |  20  30  30   0  20  20   0   0 |   5  10   0  10   0   0   5   0  0 | 32  *  *  *  *
x3o3x .   x    24 |   24   24   0  12 |   8  12   0  12   8   0  12   0 |   2   0   4   0   6   0   0   4  0 |  * 80  *  *  *
x3o . x4/3x    24 |   24    0  12  12 |   8   0  12  12   0   0   0   3 |   0   4   4   0   0   3   0   0  0 |  *  * 80  *  *
x . x3x4/3x    96 |   48   48  48  48 |   0  24  24  24   0  16  24  12 |   0   0   0   8  12   6   0   0  2 |  *  *  * 40  *
. o3x3x4/3x   192 |    0  192  96  96 |   0   0   0   0  64  64  96  24 |   0   0   0   0   0   0  16  32  8 |  *  *  *  * 10

x3/2o3/2x3x4/3x

.   .   . .   . | 1920 |    2    2   1   1 |   1   2   2   2   1   2   2   1 |   1   1   1   2   2   2   1   1  2 |  1  1  1  2  1
----------------+------+-------------------+---------------------------------+------------------------------------+---------------
x   .   . .   . |    2 | 1920    *   *   * |   1   1   1   1   0   0   0   0 |   1   1   1   1   1   1   0   0  0 |  1  1  1  1  0
.   .   x .   . |    2 |    * 1920   *   * |   0   1   0   0   1   1   1   0 |   1   0   0   1   1   0   1   1  1 |  1  1  0  1  1
.   .   . x   . |    2 |    *    * 960   * |   0   0   2   0   0   2   0   1 |   0   1   0   2   0   2   1   0  2 |  1  0  1  2  1
.   .   . .   x |    2 |    *    *   * 960 |   0   0   0   2   0   0   2   1 |   0   0   1   0   2   2   0   1  2 |  0  1  1  2  1
----------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3/2o   . .   . |    3 |    3    0   0   0 | 640   *   *   *   *   *   *   * |   1   1   1   0   0   0   0   0  0 |  1  1  1  0  0
x   .   x .   . |    4 |    2    2   0   0 |   * 960   *   *   *   *   *   * |   1   0   0   1   1   0   0   0  0 |  1  1  0  1  0
x   .   . x   . |    4 |    2    0   2   0 |   *   * 960   *   *   *   *   * |   0   1   0   1   0   1   0   0  0 |  1  0  1  1  0
x   .   . .   x |    4 |    2    0   0   2 |   *   *   * 960   *   *   *   * |   0   0   1   0   1   1   0   0  0 |  0  1  1  1  0
.   o3/2x .   . |    3 |    0    3   0   0 |   *   *   *   * 640   *   *   * |   1   0   0   0   0   0   1   1  0 |  1  1  0  0  1
.   .   x3x   . |    6 |    0    3   3   0 |   *   *   *   *   * 640   *   * |   0   0   0   1   0   0   1   0  1 |  1  0  0  1  1
.   .   x .   x |    4 |    0    2   0   2 |   *   *   *   *   *   * 960   * |   0   0   0   0   1   0   0   1  1 |  0  1  0  1  1
.   .   . x4/3x |    8 |    0    0   4   4 |   *   *   *   *   *   *   * 240 |   0   0   0   0   0   2   0   0  2 |  0  0  1  2  1
----------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3/2o3/2x .   .    12 |   12   12   0   0 |   4   6   0   0   4   0   0   0 | 160   *   *   *   *   *   *   *  * |  1  1  0  0  0
x3/2o   . x   .     6 |    6    0   3   0 |   2   0   3   0   0   0   0   0 |   * 320   *   *   *   *   *   *  * |  1  0  1  0  0
x3/2o   . .   x     6 |    6    0   0   3 |   2   0   0   3   0   0   0   0 |   *   * 320   *   *   *   *   *  * |  0  1  1  0  0
x   .   x3x   .    12 |    6    6   6   0 |   0   3   3   0   0   2   0   0 |   *   *   * 320   *   *   *   *  * |  1  0  0  1  0
x   .   x .   x     8 |    4    4   0   4 |   0   2   0   2   0   0   2   0 |   *   *   *   * 480   *   *   *  * |  0  1  0  1  0
x   .   . x4/3x    16 |    8    0   8   8 |   0   0   4   4   0   0   0   2 |   *   *   *   *   * 240   *   *  * |  0  0  1  1  0
.   o3/2x3x   .    12 |    0   12   6   0 |   0   0   0   0   4   4   0   0 |   *   *   *   *   *   * 160   *  * |  1  0  0  0  1
.   o3/2x .   x     6 |    0    6   0   3 |   0   0   0   0   2   0   3   0 |   *   *   *   *   *   *   * 320  * |  0  1  0  0  1
.   .   x3x4/3x    48 |    0   24  24  24 |   0   0   0   0   0   8  12   6 |   *   *   *   *   *   *   *   * 80 |  0  0  0  1  1
----------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3/2o3/2x3x   .    60 |   60   60  30   0 |  20  30  30   0  20  20   0   0 |   5  10   0  10   0   0   5   0  0 | 32  *  *  *  *
x3/2o3/2x .   x    24 |   24   24   0  12 |   8  12   0  12   8   0  12   0 |   2   0   4   0   6   0   0   4  0 |  * 80  *  *  *
x3/2o   . x4/3x    24 |   24    0  12  12 |   8   0  12  12   0   0   0   3 |   0   4   4   0   0   3   0   0  0 |  *  * 80  *  *
x   .   x3x4/3x    96 |   48   48  48  48 |   0  24  24  24   0  16  24  12 |   0   0   0   8  12   6   0   0  2 |  *  *  * 40  *
.   o3/2x3x4/3x   192 |    0  192  96  96 |   0   0   0   0  64  64  96  24 |   0   0   0   0   0   0  16  32  8 |  *  *  *  * 10

© 2004-2025
top of page