Acronym | quacgarn | |||||||||||||||||||||||||||
Name | quasicelligreatorhombated penteract | |||||||||||||||||||||||||||
Field of sections |
© | |||||||||||||||||||||||||||
Circumradius | sqrt[41-16 sqrt(2)]/2 = 2.143163 | |||||||||||||||||||||||||||
Vertex figure |
© | |||||||||||||||||||||||||||
Coordinates | ((3 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2) & all permutations, all changes of sign | |||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| |||||||||||||||||||||||||||
Face vector | 1920, 5760, 6000, 2400, 242 | |||||||||||||||||||||||||||
Confer |
| |||||||||||||||||||||||||||
External links |
As abstract polytope quacgarn is isomorphic to cogrin, thereby replacing octagrams by octagons, resp. stop by op and quitco by girco, resp. tistodip by todip, quitcope by gircope, and gaqrit by grit.
Incidence matrix according to Dynkin symbol
x3o3x3x4/3x . . . . . | 1920 | 2 2 1 1 | 1 2 2 2 1 2 2 1 | 1 1 1 2 2 2 1 1 2 | 1 1 1 2 1 ------------+------+-------------------+---------------------------------+------------------------------------+--------------- x . . . . | 2 | 1920 * * * | 1 1 1 1 0 0 0 0 | 1 1 1 1 1 1 0 0 0 | 1 1 1 1 0 . . x . . | 2 | * 1920 * * | 0 1 0 0 1 1 1 0 | 1 0 0 1 1 0 1 1 1 | 1 1 0 1 1 . . . x . | 2 | * * 960 * | 0 0 2 0 0 2 0 1 | 0 1 0 2 0 2 1 0 2 | 1 0 1 2 1 . . . . x | 2 | * * * 960 | 0 0 0 2 0 0 2 1 | 0 0 1 0 2 2 0 1 2 | 0 1 1 2 1 ------------+------+-------------------+---------------------------------+------------------------------------+--------------- x3o . . . | 3 | 3 0 0 0 | 640 * * * * * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 2 0 0 | * 960 * * * * * * | 1 0 0 1 1 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 2 0 | * * 960 * * * * * | 0 1 0 1 0 1 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 2 | * * * 960 * * * * | 0 0 1 0 1 1 0 0 0 | 0 1 1 1 0 . o3x . . | 3 | 0 3 0 0 | * * * * 640 * * * | 1 0 0 0 0 0 1 1 0 | 1 1 0 0 1 . . x3x . | 6 | 0 3 3 0 | * * * * * 640 * * | 0 0 0 1 0 0 1 0 1 | 1 0 0 1 1 . . x . x | 4 | 0 2 0 2 | * * * * * * 960 * | 0 0 0 0 1 0 0 1 1 | 0 1 0 1 1 . . . x4/3x | 8 | 0 0 4 4 | * * * * * * * 240 | 0 0 0 0 0 2 0 0 2 | 0 0 1 2 1 ------------+------+-------------------+---------------------------------+------------------------------------+--------------- x3o3x . . ♦ 12 | 12 12 0 0 | 4 6 0 0 4 0 0 0 | 160 * * * * * * * * | 1 1 0 0 0 x3o . x . ♦ 6 | 6 0 3 0 | 2 0 3 0 0 0 0 0 | * 320 * * * * * * * | 1 0 1 0 0 x3o . . x ♦ 6 | 6 0 0 3 | 2 0 0 3 0 0 0 0 | * * 320 * * * * * * | 0 1 1 0 0 x . x3x . ♦ 12 | 6 6 6 0 | 0 3 3 0 0 2 0 0 | * * * 320 * * * * * | 1 0 0 1 0 x . x . x ♦ 8 | 4 4 0 4 | 0 2 0 2 0 0 2 0 | * * * * 480 * * * * | 0 1 0 1 0 x . . x4/3x ♦ 16 | 8 0 8 8 | 0 0 4 4 0 0 0 2 | * * * * * 240 * * * | 0 0 1 1 0 . o3x3x . ♦ 12 | 0 12 6 0 | 0 0 0 0 4 4 0 0 | * * * * * * 160 * * | 1 0 0 0 1 . o3x . x ♦ 6 | 0 6 0 3 | 0 0 0 0 2 0 3 0 | * * * * * * * 320 * | 0 1 0 0 1 . . x3x4/3x ♦ 48 | 0 24 24 24 | 0 0 0 0 0 8 12 6 | * * * * * * * * 80 | 0 0 0 1 1 ------------+------+-------------------+---------------------------------+------------------------------------+--------------- x3o3x3x . ♦ 60 | 60 60 30 0 | 20 30 30 0 20 20 0 0 | 5 10 0 10 0 0 5 0 0 | 32 * * * * x3o3x . x ♦ 24 | 24 24 0 12 | 8 12 0 12 8 0 12 0 | 2 0 4 0 6 0 0 4 0 | * 80 * * * x3o . x4/3x ♦ 24 | 24 0 12 12 | 8 0 12 12 0 0 0 3 | 0 4 4 0 0 3 0 0 0 | * * 80 * * x . x3x4/3x ♦ 96 | 48 48 48 48 | 0 24 24 24 0 16 24 12 | 0 0 0 8 12 6 0 0 2 | * * * 40 * . o3x3x4/3x ♦ 192 | 0 192 96 96 | 0 0 0 0 64 64 96 24 | 0 0 0 0 0 0 16 32 8 | * * * * 10
© 2004-2024 | top of page |