Acronym quacgarn
Name quasicelligreatorhombated penteract
Field of sections
 ©
Circumradius sqrt[41-16 sqrt(2)]/2 = 2.143163
Vertex figure
 ©
Coordinates ((3 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – uniform polyteral members:
by cells: cope gaqrit gaquidpoth ohope pittip prip quitcope tistodip
quacgarn 8010000324080
gorcgrin 0101080320080
& others)
Face vector 1920, 5760, 6000, 2400, 242
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude   polytopewiki  

As abstract polytope quacgarn is isomorphic to cogrin, thereby replacing octagrams by octagons, resp. stop by op and quitco by girco, resp. tistodip by todip, quitcope by gircope, and gaqrit by grit.


Incidence matrix according to Dynkin symbol

x3o3x3x4/3x

. . . .   . | 1920 |    2    2   1   1 |   1   2   2   2   1   2   2   1 |   1   1   1   2   2   2   1   1  2 |  1  1  1  2  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x . . .   . |    2 | 1920    *   *   * |   1   1   1   1   0   0   0   0 |   1   1   1   1   1   1   0   0  0 |  1  1  1  1  0
. . x .   . |    2 |    * 1920   *   * |   0   1   0   0   1   1   1   0 |   1   0   0   1   1   0   1   1  1 |  1  1  0  1  1
. . . x   . |    2 |    *    * 960   * |   0   0   2   0   0   2   0   1 |   0   1   0   2   0   2   1   0  2 |  1  0  1  2  1
. . . .   x |    2 |    *    *   * 960 |   0   0   0   2   0   0   2   1 |   0   0   1   0   2   2   0   1  2 |  0  1  1  2  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3o . .   . |    3 |    3    0   0   0 | 640   *   *   *   *   *   *   * |   1   1   1   0   0   0   0   0  0 |  1  1  1  0  0
x . x .   . |    4 |    2    2   0   0 |   * 960   *   *   *   *   *   * |   1   0   0   1   1   0   0   0  0 |  1  1  0  1  0
x . . x   . |    4 |    2    0   2   0 |   *   * 960   *   *   *   *   * |   0   1   0   1   0   1   0   0  0 |  1  0  1  1  0
x . . .   x |    4 |    2    0   0   2 |   *   *   * 960   *   *   *   * |   0   0   1   0   1   1   0   0  0 |  0  1  1  1  0
. o3x .   . |    3 |    0    3   0   0 |   *   *   *   * 640   *   *   * |   1   0   0   0   0   0   1   1  0 |  1  1  0  0  1
. . x3x   . |    6 |    0    3   3   0 |   *   *   *   *   * 640   *   * |   0   0   0   1   0   0   1   0  1 |  1  0  0  1  1
. . x .   x |    4 |    0    2   0   2 |   *   *   *   *   *   * 960   * |   0   0   0   0   1   0   0   1  1 |  0  1  0  1  1
. . . x4/3x |    8 |    0    0   4   4 |   *   *   *   *   *   *   * 240 |   0   0   0   0   0   2   0   0  2 |  0  0  1  2  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3o3x .   .    12 |   12   12   0   0 |   4   6   0   0   4   0   0   0 | 160   *   *   *   *   *   *   *  * |  1  1  0  0  0
x3o . x   .     6 |    6    0   3   0 |   2   0   3   0   0   0   0   0 |   * 320   *   *   *   *   *   *  * |  1  0  1  0  0
x3o . .   x     6 |    6    0   0   3 |   2   0   0   3   0   0   0   0 |   *   * 320   *   *   *   *   *  * |  0  1  1  0  0
x . x3x   .    12 |    6    6   6   0 |   0   3   3   0   0   2   0   0 |   *   *   * 320   *   *   *   *  * |  1  0  0  1  0
x . x .   x     8 |    4    4   0   4 |   0   2   0   2   0   0   2   0 |   *   *   *   * 480   *   *   *  * |  0  1  0  1  0
x . . x4/3x    16 |    8    0   8   8 |   0   0   4   4   0   0   0   2 |   *   *   *   *   * 240   *   *  * |  0  0  1  1  0
. o3x3x   .    12 |    0   12   6   0 |   0   0   0   0   4   4   0   0 |   *   *   *   *   *   * 160   *  * |  1  0  0  0  1
. o3x .   x     6 |    0    6   0   3 |   0   0   0   0   2   0   3   0 |   *   *   *   *   *   *   * 320  * |  0  1  0  0  1
. . x3x4/3x    48 |    0   24  24  24 |   0   0   0   0   0   8  12   6 |   *   *   *   *   *   *   *   * 80 |  0  0  0  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3o3x3x   .    60 |   60   60  30   0 |  20  30  30   0  20  20   0   0 |   5  10   0  10   0   0   5   0  0 | 32  *  *  *  *
x3o3x .   x    24 |   24   24   0  12 |   8  12   0  12   8   0  12   0 |   2   0   4   0   6   0   0   4  0 |  * 80  *  *  *
x3o . x4/3x    24 |   24    0  12  12 |   8   0  12  12   0   0   0   3 |   0   4   4   0   0   3   0   0  0 |  *  * 80  *  *
x . x3x4/3x    96 |   48   48  48  48 |   0  24  24  24   0  16  24  12 |   0   0   0   8  12   6   0   0  2 |  *  *  * 40  *
. o3x3x4/3x   192 |    0  192  96  96 |   0   0   0   0  64  64  96  24 |   0   0   0   0   0   0  16  32  8 |  *  *  *  * 10

© 2004-2024
top of page