Acronym cogart (old: gocart)
Name celligreatorhombated triacontiditeron,
(great cellirhombated triacontiditeron),
stericantitruncated pentacross
Field of sections
` ©`
Vertex figure
` ©    ©`
Coordinates ((1+3 sqrt(2))/2, (1+2 sqrt(2))/2, (1+sqrt(2))/2, 1/2, 1/2)   & all permutations, all changes of sign
General of army (is itself convex)
Colonel of regiment (is itself locally convex – uniform polyteral members:
 by cells: gidpith grip prit shiddip sichado sircope soccope tope sibcotdin 10 32 0 80 10 0 40 0 cogart 0 32 10 80 0 40 0 80
& others)
Confer
related segmentotera:
gidpithip
general polytopal classes:
partial Stott expansions
External

As abstract polytope cogart is isomorphic to quicgrat, thereby replacing sirco by querco, resp. sircope by quercope and prit by paqrit.

Incidence matrix according to Dynkin symbol

```x3x3x3o4x

. . . . . | 1920 |   1   1    2    2 |   1   2   2   2   2   1   2   1 |   2   2   1   2   1   1   2   1  1 |  1  2  1  1  1
----------+------+-------------------+---------------------------------+------------------------------------+---------------
x . . . . |    2 | 960   *    *    * |   1   2   2   0   0   0   0   0 |   2   2   1   2   1   0   0   0  0 |  1  2  1  1  0
. x . . . |    2 |   * 960    *    * |   1   0   0   2   2   0   0   0 |   2   2   0   0   0   1   2   1  0 |  1  2  1  0  1
. . x . . |    2 |   *   * 1920    * |   0   1   0   1   0   1   1   0 |   1   0   1   1   0   1   1   0  1 |  1  1  0  1  1
. . . . x |    2 |   *   *    * 1920 |   0   0   1   0   1   0   1   1 |   0   1   0   1   1   0   1   1  1 |  0  1  1  1  1
----------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x . . . |    6 |   3   3    0    0 | 320   *   *   *   *   *   *   * |   2   2   0   0   0   0   0   0  0 |  1  2  1  0  0
x . x . . |    4 |   2   0    2    0 |   * 960   *   *   *   *   *   * |   1   0   1   1   0   0   0   0  0 |  1  1  0  1  0
x . . . x |    4 |   2   0    0    2 |   *   * 960   *   *   *   *   * |   0   1   0   1   1   0   0   0  0 |  0  1  1  1  0
. x3x . . |    6 |   0   3    3    0 |   *   *   * 640   *   *   *   * |   1   0   0   0   0   1   1   0  0 |  1  1  0  0  1
. x . . x |    4 |   0   2    0    2 |   *   *   *   * 960   *   *   * |   0   1   0   0   0   0   1   1  0 |  0  1  1  0  1
. . x3o . |    3 |   0   0    3    0 |   *   *   *   *   * 640   *   * |   0   0   1   0   0   1   0   0  1 |  1  0  0  1  1
. . x . x |    4 |   0   0    2    2 |   *   *   *   *   *   * 960   * |   0   0   0   1   0   0   1   0  1 |  0  1  0  1  1
. . . o4x |    4 |   0   0    0    4 |   *   *   *   *   *   *   * 480 |   0   0   0   0   1   0   0   1  1 |  0  0  1  1  1
----------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x3x . . ♦   24 |  12  12   12    0 |   4   6   0   4   0   0   0   0 | 160   *   *   *   *   *   *   *  * |  1  1  0  0  0
x3x . . x ♦   12 |   6   6    0    6 |   2   0   3   0   3   0   0   0 |   * 320   *   *   *   *   *   *  * |  0  1  1  0  0
x . x3o . ♦    6 |   3   0    6    0 |   0   3   0   0   0   2   0   0 |   *   * 320   *   *   *   *   *  * |  1  0  0  1  0
x . x . x ♦    8 |   4   0    4    4 |   0   2   2   0   0   0   2   0 |   *   *   * 480   *   *   *   *  * |  0  1  0  1  0
x . . o4x ♦    8 |   4   0    0    8 |   0   0   4   0   0   0   0   2 |   *   *   *   * 240   *   *   *  * |  0  0  1  1  0
. x3x3o . ♦   12 |   0   6   12    0 |   0   0   0   4   0   4   0   0 |   *   *   *   *   * 160   *   *  * |  1  0  0  0  1
. x3x . x ♦   12 |   0   6    6    6 |   0   0   0   2   3   0   3   0 |   *   *   *   *   *   * 320   *  * |  0  1  0  0  1
. x . o4x ♦    8 |   0   4    0    8 |   0   0   0   0   4   0   0   2 |   *   *   *   *   *   *   * 240  * |  0  0  1  0  1
. . x3o4x ♦   24 |   0   0   24   24 |   0   0   0   0   0   8  12   6 |   *   *   *   *   *   *   *   * 80 |  0  0  0  1  1
----------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x3x3o . ♦   60 |  30  30   60    0 |  10  30   0  20   0  20   0   0 |   5   0  10   0   0   5   0   0  0 | 32  *  *  *  *
x3x3x . x ♦   48 |  24  24   24   24 |   8  12  12   8  12   0  12   0 |   2   4   0   6   0   0   4   0  0 |  * 80  *  *  *
x3x . o4x ♦   24 |  12  12    0   24 |   4   0  12   0  12   0   0   6 |   0   4   0   0   3   0   0   3  0 |  *  * 80  *  *
x . x3o4x ♦   48 |  24   0   48   48 |   0  24  24   0   0  16  24  12 |   0   0   8  12   6   0   0   0  2 |  *  *  * 40  *
. x3x3o4x ♦  192 |   0  96  192  192 |   0   0   0  64  96  64  96  48 |   0   0   0   0   0  16  32  24  8 |  *  *  *  * 10

snubbed forms: x3x3x3o4s
```