Acronym quicgrat (old: cogqrit)
Name quasicelligreat rhombated triacontiditeron,
(celligreat quasirhombated triacontiditeron)
Circumradius sqrt[33-12 sqrt(2)]/2 = 2.001839
Vertex figure
 ©
Coordinates (3 sqrt(2)-1, 2 sqrt(2)-1, sqrt(2)-1, 1, 1)/2   & all permutations, all changes of sign
Colonel of regiment gibcotdin
Face vector 1920, 5760, 5920, 2320, 242
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude   polytopewiki

As abstract polytope quicgrat is isomorphic to cogart, thereby replacing querco by sirco, resp. quercope by sircope and paqrit by prit.


Incidence matrix according to Dynkin symbol

x3x3x3o4/3x

. . . .   . | 1920 |   1   1    2    2 |   1   2   2   2   2   1   2   1 |   2   2   1   2   1   1   2   1  1 |  1  2  1  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x . . .   . |    2 | 960   *    *    * |   1   2   2   0   0   0   0   0 |   2   2   1   2   1   0   0   0  0 |  1  2  1  1  0
. x . .   . |    2 |   * 960    *    * |   1   0   0   2   2   0   0   0 |   2   2   0   0   0   1   2   1  0 |  1  2  1  0  1
. . x .   . |    2 |   *   * 1920    * |   0   1   0   1   0   1   1   0 |   1   0   1   1   0   1   1   0  1 |  1  1  0  1  1
. . . .   x |    2 |   *   *    * 1920 |   0   0   1   0   1   0   1   1 |   0   1   0   1   1   0   1   1  1 |  0  1  1  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x . .   . |    6 |   3   3    0    0 | 320   *   *   *   *   *   *   * |   2   2   0   0   0   0   0   0  0 |  1  2  1  0  0
x . x .   . |    4 |   2   0    2    0 |   * 960   *   *   *   *   *   * |   1   0   1   1   0   0   0   0  0 |  1  1  0  1  0
x . . .   x |    4 |   2   0    0    2 |   *   * 960   *   *   *   *   * |   0   1   0   1   1   0   0   0  0 |  0  1  1  1  0
. x3x .   . |    6 |   0   3    3    0 |   *   *   * 640   *   *   *   * |   1   0   0   0   0   1   1   0  0 |  1  1  0  0  1
. x . .   x |    4 |   0   2    0    2 |   *   *   *   * 960   *   *   * |   0   1   0   0   0   0   1   1  0 |  0  1  1  0  1
. . x3o   . |    3 |   0   0    3    0 |   *   *   *   *   * 640   *   * |   0   0   1   0   0   1   0   0  1 |  1  0  0  1  1
. . x .   x |    4 |   0   0    2    2 |   *   *   *   *   *   * 960   * |   0   0   0   1   0   0   1   0  1 |  0  1  0  1  1
. . . o4/3x |    4 |   0   0    0    4 |   *   *   *   *   *   *   * 480 |   0   0   0   0   1   0   0   1  1 |  0  0  1  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x3x .   .    24 |  12  12   12    0 |   4   6   0   4   0   0   0   0 | 160   *   *   *   *   *   *   *  * |  1  1  0  0  0
x3x . .   x    12 |   6   6    0    6 |   2   0   3   0   3   0   0   0 |   * 320   *   *   *   *   *   *  * |  0  1  1  0  0
x . x3o   .     6 |   3   0    6    0 |   0   3   0   0   0   2   0   0 |   *   * 320   *   *   *   *   *  * |  1  0  0  1  0
x . x .   x     8 |   4   0    4    4 |   0   2   2   0   0   0   2   0 |   *   *   * 480   *   *   *   *  * |  0  1  0  1  0
x . . o4/3x     8 |   4   0    0    8 |   0   0   4   0   0   0   0   2 |   *   *   *   * 240   *   *   *  * |  0  0  1  1  0
. x3x3o   .    12 |   0   6   12    0 |   0   0   0   4   0   4   0   0 |   *   *   *   *   * 160   *   *  * |  1  0  0  0  1
. x3x .   x    12 |   0   6    6    6 |   0   0   0   2   3   0   3   0 |   *   *   *   *   *   * 320   *  * |  0  1  0  0  1
. x . o4/3x     8 |   0   4    0    8 |   0   0   0   0   4   0   0   2 |   *   *   *   *   *   *   * 240  * |  0  0  1  0  1
. . x3o4/3x    24 |   0   0   24   24 |   0   0   0   0   0   8  12   6 |   *   *   *   *   *   *   *   * 80 |  0  0  0  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x3x3o   .    60 |  30  30   60    0 |  10  30   0  20   0  20   0   0 |   5   0  10   0   0   5   0   0  0 | 32  *  *  *  *
x3x3x .   x    48 |  24  24   24   24 |   8  12  12   8  12   0  12   0 |   2   4   0   6   0   0   4   0  0 |  * 80  *  *  *
x3x . o4/3x    24 |  12  12    0   24 |   4   0  12   0  12   0   0   6 |   0   4   0   0   3   0   0   3  0 |  *  * 80  *  *
x . x3o4/3x    48 |  24   0   48   48 |   0  24  24   0   0  16  24  12 |   0   0   8  12   6   0   0   0  2 |  *  *  * 40  *
. x3x3o4/3x   192 |   0  96  192  192 |   0   0   0  64  96  64  96  48 |   0   0   0   0   0  16  32  24  8 |  *  *  *  * 10

x3x3x3/2o4x

. . .   . . | 1920 |   1   1    2    2 |   1   2   2   2   2   1   2   1 |   2   2   1   2   1   1   2   1  1 |  1  2  1  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x . .   . . |    2 | 960   *    *    * |   1   2   2   0   0   0   0   0 |   2   2   1   2   1   0   0   0  0 |  1  2  1  1  0
. x .   . . |    2 |   * 960    *    * |   1   0   0   2   2   0   0   0 |   2   2   0   0   0   1   2   1  0 |  1  2  1  0  1
. . x   . . |    2 |   *   * 1920    * |   0   1   0   1   0   1   1   0 |   1   0   1   1   0   1   1   0  1 |  1  1  0  1  1
. . .   . x |    2 |   *   *    * 1920 |   0   0   1   0   1   0   1   1 |   0   1   0   1   1   0   1   1  1 |  0  1  1  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x .   . . |    6 |   3   3    0    0 | 320   *   *   *   *   *   *   * |   2   2   0   0   0   0   0   0  0 |  1  2  1  0  0
x . x   . . |    4 |   2   0    2    0 |   * 960   *   *   *   *   *   * |   1   0   1   1   0   0   0   0  0 |  1  1  0  1  0
x . .   . x |    4 |   2   0    0    2 |   *   * 960   *   *   *   *   * |   0   1   0   1   1   0   0   0  0 |  0  1  1  1  0
. x3x   . . |    6 |   0   3    3    0 |   *   *   * 640   *   *   *   * |   1   0   0   0   0   1   1   0  0 |  1  1  0  0  1
. x .   . x |    4 |   0   2    0    2 |   *   *   *   * 960   *   *   * |   0   1   0   0   0   0   1   1  0 |  0  1  1  0  1
. . x3/2o . |    3 |   0   0    3    0 |   *   *   *   *   * 640   *   * |   0   0   1   0   0   1   0   0  1 |  1  0  0  1  1
. . x   . x |    4 |   0   0    2    2 |   *   *   *   *   *   * 960   * |   0   0   0   1   0   0   1   0  1 |  0  1  0  1  1
. . .   o4x |    4 |   0   0    0    4 |   *   *   *   *   *   *   * 480 |   0   0   0   0   1   0   0   1  1 |  0  0  1  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x3x   . .    24 |  12  12   12    0 |   4   6   0   4   0   0   0   0 | 160   *   *   *   *   *   *   *  * |  1  1  0  0  0
x3x .   . x    12 |   6   6    0    6 |   2   0   3   0   3   0   0   0 |   * 320   *   *   *   *   *   *  * |  0  1  1  0  0
x . x3/2o .     6 |   3   0    6    0 |   0   3   0   0   0   2   0   0 |   *   * 320   *   *   *   *   *  * |  1  0  0  1  0
x . x   . x     8 |   4   0    4    4 |   0   2   2   0   0   0   2   0 |   *   *   * 480   *   *   *   *  * |  0  1  0  1  0
x . .   o4x     8 |   4   0    0    8 |   0   0   4   0   0   0   0   2 |   *   *   *   * 240   *   *   *  * |  0  0  1  1  0
. x3x3/2o .    12 |   0   6   12    0 |   0   0   0   4   0   4   0   0 |   *   *   *   *   * 160   *   *  * |  1  0  0  0  1
. x3x   . x    12 |   0   6    6    6 |   0   0   0   2   3   0   3   0 |   *   *   *   *   *   * 320   *  * |  0  1  0  0  1
. x .   o4x     8 |   0   4    0    8 |   0   0   0   0   4   0   0   2 |   *   *   *   *   *   *   * 240  * |  0  0  1  0  1
. . x3/2o4x    24 |   0   0   24   24 |   0   0   0   0   0   8  12   6 |   *   *   *   *   *   *   *   * 80 |  0  0  0  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x3x3/2o .    60 |  30  30   60    0 |  10  30   0  20   0  20   0   0 |   5   0  10   0   0   5   0   0  0 | 32  *  *  *  *
x3x3x   . x    48 |  24  24   24   24 |   8  12  12   8  12   0  12   0 |   2   4   0   6   0   0   4   0  0 |  * 80  *  *  *
x3x .   o4x    24 |  12  12    0   24 |   4   0  12   0  12   0   0   6 |   0   4   0   0   3   0   0   3  0 |  *  * 80  *  *
x . x3/2o4x    48 |  24   0   48   48 |   0  24  24   0   0  16  24  12 |   0   0   8  12   6   0   0   0  2 |  *  *  * 40  *
. x3x3/2o4x   192 |   0  96  192  192 |   0   0   0  64  96  64  96  48 |   0   0   0   0   0  16  32  24  8 |  *  *  *  * 10

© 2004-2025
top of page