Acronym quicgrat (old: cogqrit)
Name quasicelligreat rhombated triacontiditeron,
(celligreat quasirhombated triacontiditeron)
Circumradius sqrt[33-12 sqrt(2)]/2 = 2.001839
Vertex figure
 ©
Coordinates ((3 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment gibcotdin
Face vector 1920, 5760, 5920, 2320, 242
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude   polytopewiki

As abstract polytope quicgrat is isomorphic to cogart, thereby replacing querco by sirco, resp. quercope by sircope and paqrit by prit.


Incidence matrix according to Dynkin symbol

x3x3x3o4/3x

. . . .   . | 1920 |   1   1    2    2 |   1   2   2   2   2   1   2   1 |   2   2   1   2   1   1   2   1  1 |  1  2  1  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x . . .   . |    2 | 960   *    *    * |   1   2   2   0   0   0   0   0 |   2   2   1   2   1   0   0   0  0 |  1  2  1  1  0
. x . .   . |    2 |   * 960    *    * |   1   0   0   2   2   0   0   0 |   2   2   0   0   0   1   2   1  0 |  1  2  1  0  1
. . x .   . |    2 |   *   * 1920    * |   0   1   0   1   0   1   1   0 |   1   0   1   1   0   1   1   0  1 |  1  1  0  1  1
. . . .   x |    2 |   *   *    * 1920 |   0   0   1   0   1   0   1   1 |   0   1   0   1   1   0   1   1  1 |  0  1  1  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x . .   . |    6 |   3   3    0    0 | 320   *   *   *   *   *   *   * |   2   2   0   0   0   0   0   0  0 |  1  2  1  0  0
x . x .   . |    4 |   2   0    2    0 |   * 960   *   *   *   *   *   * |   1   0   1   1   0   0   0   0  0 |  1  1  0  1  0
x . . .   x |    4 |   2   0    0    2 |   *   * 960   *   *   *   *   * |   0   1   0   1   1   0   0   0  0 |  0  1  1  1  0
. x3x .   . |    6 |   0   3    3    0 |   *   *   * 640   *   *   *   * |   1   0   0   0   0   1   1   0  0 |  1  1  0  0  1
. x . .   x |    4 |   0   2    0    2 |   *   *   *   * 960   *   *   * |   0   1   0   0   0   0   1   1  0 |  0  1  1  0  1
. . x3o   . |    3 |   0   0    3    0 |   *   *   *   *   * 640   *   * |   0   0   1   0   0   1   0   0  1 |  1  0  0  1  1
. . x .   x |    4 |   0   0    2    2 |   *   *   *   *   *   * 960   * |   0   0   0   1   0   0   1   0  1 |  0  1  0  1  1
. . . o4/3x |    4 |   0   0    0    4 |   *   *   *   *   *   *   * 480 |   0   0   0   0   1   0   0   1  1 |  0  0  1  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x3x .   .    24 |  12  12   12    0 |   4   6   0   4   0   0   0   0 | 160   *   *   *   *   *   *   *  * |  1  1  0  0  0
x3x . .   x    12 |   6   6    0    6 |   2   0   3   0   3   0   0   0 |   * 320   *   *   *   *   *   *  * |  0  1  1  0  0
x . x3o   .     6 |   3   0    6    0 |   0   3   0   0   0   2   0   0 |   *   * 320   *   *   *   *   *  * |  1  0  0  1  0
x . x .   x     8 |   4   0    4    4 |   0   2   2   0   0   0   2   0 |   *   *   * 480   *   *   *   *  * |  0  1  0  1  0
x . . o4/3x     8 |   4   0    0    8 |   0   0   4   0   0   0   0   2 |   *   *   *   * 240   *   *   *  * |  0  0  1  1  0
. x3x3o   .    12 |   0   6   12    0 |   0   0   0   4   0   4   0   0 |   *   *   *   *   * 160   *   *  * |  1  0  0  0  1
. x3x .   x    12 |   0   6    6    6 |   0   0   0   2   3   0   3   0 |   *   *   *   *   *   * 320   *  * |  0  1  0  0  1
. x . o4/3x     8 |   0   4    0    8 |   0   0   0   0   4   0   0   2 |   *   *   *   *   *   *   * 240  * |  0  0  1  0  1
. . x3o4/3x    24 |   0   0   24   24 |   0   0   0   0   0   8  12   6 |   *   *   *   *   *   *   *   * 80 |  0  0  0  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x3x3o   .    60 |  30  30   60    0 |  10  30   0  20   0  20   0   0 |   5   0  10   0   0   5   0   0  0 | 32  *  *  *  *
x3x3x .   x    48 |  24  24   24   24 |   8  12  12   8  12   0  12   0 |   2   4   0   6   0   0   4   0  0 |  * 80  *  *  *
x3x . o4/3x    24 |  12  12    0   24 |   4   0  12   0  12   0   0   6 |   0   4   0   0   3   0   0   3  0 |  *  * 80  *  *
x . x3o4/3x    48 |  24   0   48   48 |   0  24  24   0   0  16  24  12 |   0   0   8  12   6   0   0   0  2 |  *  *  * 40  *
. x3x3o4/3x   192 |   0  96  192  192 |   0   0   0  64  96  64  96  48 |   0   0   0   0   0  16  32  24  8 |  *  *  *  * 10

© 2004-2024
top of page