Acronym giphin
Name great prismated hemipenteract,
steriruncicantic penteract
Field of sections
 ©
Circumradius sqrt(85/8) = 3.259601
Vertex figure
 ©
Face vector 960, 2400, 2080, 720, 82
Confer
general polytopal classes:
Wythoffian polytera   lace simplices   partial Stott expansions  
External
links
hedrondude   wikipedia   polytopewiki

Incidence matrix according to Dynkin symbol

x3x3o *b3x3x

. . .    . . | 960 |   1   2   1   1 |   2   1   1   1   2   2   1 |  1  2   2  1  1   1  2 |  1  1  2  1
-------------+-----+-----------------+-----------------------------+------------------------+------------
x . .    . . |   2 | 480   *   *   * |   2   1   1   0   0   0   0 |  1  2   2  1  0   0  0 |  1  1  2  0
. x .    . . |   2 |   * 960   *   * |   1   0   0   1   1   1   0 |  1  1   1  0  1   1  1 |  1  1  1  1
. . .    x . |   2 |   *   * 480   * |   0   1   0   0   2   0   1 |  0  2   0  1  1   0  2 |  1  0  2  1
. . .    . x |   2 |   *   *   * 480 |   0   0   1   0   0   2   1 |  0  0   2  1  0   1  2 |  0  1  2  1
-------------+-----+-----------------+-----------------------------+------------------------+------------
x3x .    . . |   6 |   3   3   0   0 | 320   *   *   *   *   *   * |  1  1   1  0  0   0  0 |  1  1  1  0
x . .    x . |   4 |   2   0   2   0 |   * 240   *   *   *   *   * |  0  2   0  1  0   0  0 |  1  0  2  0
x . .    . x |   4 |   2   0   0   2 |   *   * 240   *   *   *   * |  0  0   2  1  0   0  0 |  0  1  2  0
. x3o    . . |   3 |   0   3   0   0 |   *   *   * 320   *   *   * |  1  0   0  0  1   1  0 |  1  1  0  1
. x . *b3x . |   6 |   0   3   3   0 |   *   *   *   * 320   *   * |  0  1   0  0  1   0  1 |  1  0  1  1
. x .    . x |   4 |   0   2   0   2 |   *   *   *   *   * 480   * |  0  0   1  0  0   1  1 |  0  1  1  1
. . .    x3x |   6 |   0   0   3   3 |   *   *   *   *   *   * 160 |  0  0   0  1  0   0  2 |  0  0  2  1
-------------+-----+-----------------+-----------------------------+------------------------+------------
x3x3o    . .   12 |   6  12   0   0 |   4   0   0   4   0   0   0 | 80  *   *  *  *   *  * |  1  1  0  0
x3x . *b3x .   24 |  12  12  12   0 |   4   6   0   0   4   0   0 |  * 80   *  *  *   *  * |  1  0  1  0
x3x .    . x   12 |   6   6   0   6 |   2   0   3   0   0   3   0 |  *  * 160  *  *   *  * |  0  1  1  0
x . .    x3x   12 |   6   0   6   6 |   0   3   3   0   0   0   2 |  *  *   * 80  *   *  * |  0  0  2  0
. x3o *b3x .   12 |   0  12   6   0 |   0   0   0   4   4   0   0 |  *  *   *  * 80   *  * |  1  0  0  1
. x3o    . x    6 |   0   6   0   3 |   0   0   0   2   0   3   0 |  *  *   *  *  * 160  * |  0  1  0  1
. x . *b3x3x   24 |   0  12  12  12 |   0   0   0   0   4   6   4 |  *  *   *  *  *   * 80 |  0  0  1  1
-------------+-----+-----------------+-----------------------------+------------------------+------------
x3x3o *b3x .   96 |  48  96  48   0 |  32  24   0  32  32   0   0 |  8  8   0  0  8   0  0 | 10  *  *  *
x3x3o    . x   24 |  12  24   0  12 |   8   0   6   8   0  12   0 |  2  0   4  0  0   4  0 |  * 40  *  *
x3x . *b3x3x  120 |  60  60  60  60 |  20  30  30   0  20  30  20 |  0  5  10 10  0   0  5 |  *  * 16  *
. x3o *b3x3x   60 |   0  60  30  30 |   0   0   0  20  20  30  10 |  0  0   0  0  5  10  5 |  *  *  * 16

x3x3x3o4s

demi( . . . . . ) | 960 |   1   1   2   1 |   1   2   2   1   1   1   2 |  2   1  1  1  1   2  2 |  1  1  1  2
------------------+-----+-----------------+-----------------------------+------------------------+------------
demi( x . . . . ) |   2 | 480   *   *   * |   1   2   0   0   1   0   0 |  2   1  0  1  0   2  0 |  1  1  0  2
demi( . x . . . ) |   2 |   * 480   *   * |   1   0   2   0   0   1   0 |  2   0  1  1  0   0  2 |  1  0  1  2
demi( . . x . . ) |   2 |   *   * 960   * |   0   1   1   1   0   0   1 |  1   1  1  0  1   1  1 |  1  1  1  1
      . . . o4s   |   2 |   *   *   * 480 |   0   0   0   0   1   1   2 |  0   0  0  1  1   2  2 |  0  1  1  2
------------------+-----+-----------------+-----------------------------+------------------------+------------
demi( x3x . . . ) |   6 |   3   3   0   0 | 160   *   *   *   *   *   * |  2   0  0  1  0   0  0 |  1  0  0  2
demi( x . x . . ) |   4 |   2   0   2   0 |   * 480   *   *   *   *   * |  1   1  0  0  0   1  0 |  1  1  0  1
demi( . x3x . . ) |   6 |   0   3   3   0 |   *   * 320   *   *   *   * |  1   0  1  0  0   0  1 |  1  0  1  1
demi( . . x3o . ) |   3 |   0   0   3   0 |   *   *   * 320   *   *   * |  0   1  1  0  1   0  0 |  1  1  1  0
      x . 2 o4s   |   4 |   2   0   0   2 |   *   *   *   * 240   *   * |  0   0  0  1  0   2  0 |  0  1  0  2
      . x 2 o4s   |   4 |   0   2   0   2 |   *   *   *   *   * 240   * |  0   0  0  1  0   0  2 |  0  0  1  2
sefa( . . x3o4s ) |   6 |   0   0   3   3 |   *   *   *   *   *   * 320 |  0   0  0  0  1   1  1 |  0  1  1  1
------------------+-----+-----------------+-----------------------------+------------------------+------------
demi( x3x3x . . )   24 |  12  12  12   0 |   4   6   4   0   0   0   0 | 80   *  *  *  *   *  * |  1  0  0  1
demi( x . x3o . )    6 |   3   0   6   0 |   0   3   0   2   0   0   0 |  * 160  *  *  *   *  * |  1  1  0  0
demi( . x3x3o . )   12 |   0   6  12   0 |   0   0   4   4   0   0   0 |  *   * 80  *  *   *  * |  1  0  1  0
      x3x 2 o4s     12 |   6   6   0   6 |   2   0   0   0   3   3   0 |  *   *  * 80  *   *  * |  0  0  0  2
      . . x3o4s     12 |   0   0  12   6 |   0   0   0   4   0   0   4 |  *   *  *  * 80   *  * |  0  1  1  0
sefa( x 2 x3o4s )   12 |   6   0   6   6 |   0   3   0   0   3   0   2 |  *   *  *  *  * 160  * |  0  1  0  1
sefa( . x3x3o4s )   24 |   0  12  12  12 |   0   0   4   0   0   6   4 |  *   *  *  *  *   * 80 |  0  0  1  1
------------------+-----+-----------------+-----------------------------+------------------------+------------
demi( x3x3x3o . )   60 |  30  30  60   0 |  10  30  20  20   0   0   0 |  5  10  5  0  0   0  0 | 16  *  *  *
      x 2 x3o4s     24 |  12   0  24  12 |   0  12   0   8   6   0   8 |  0   4  0  0  2   4  0 |  * 40  *  *
      . x3x3o4s     96 |   0  48  96  48 |   0   0  32  32   0  24  32 |  0   0  8  0  8   0  8 |  *  * 10  *
sefa( x3x3x3o4s )  120 |  60  60  60  60 |  20  30  20   0  30  30  20 |  5   0  0 10  0  10  5 |  *  *  * 16

starting figure: x3x3x3o4x

© 2004-2024
top of page