| Acronym | giphin |
| Name |
great prismated hemipenteract, steriruncicantic penteract |
| Field of sections |
|
| Circumradius | sqrt(85/8) = 3.259601 |
| Vertex figure |
|
| Face vector | 960, 2400, 2080, 720, 82 |
| Confer |
|
|
External links |
|
Incidence matrix according to Dynkin symbol
x
3 \
x---x---x
3 / 3 3
o
x3x3o *b3x3x . . . . . | 960 | 1 2 1 1 | 2 1 1 1 2 2 1 | 1 2 2 1 1 1 2 | 1 1 2 1 -------------+-----+-----------------+-----------------------------+------------------------+------------ x . . . . | 2 | 480 * * * | 2 1 1 0 0 0 0 | 1 2 2 1 0 0 0 | 1 1 2 0 . x . . . | 2 | * 960 * * | 1 0 0 1 1 1 0 | 1 1 1 0 1 1 1 | 1 1 1 1 . . . x . | 2 | * * 480 * | 0 1 0 0 2 0 1 | 0 2 0 1 1 0 2 | 1 0 2 1 . . . . x | 2 | * * * 480 | 0 0 1 0 0 2 1 | 0 0 2 1 0 1 2 | 0 1 2 1 -------------+-----+-----------------+-----------------------------+------------------------+------------ x3x . . . | 6 | 3 3 0 0 | 320 * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 x . . x . | 4 | 2 0 2 0 | * 240 * * * * * | 0 2 0 1 0 0 0 | 1 0 2 0 x . . . x | 4 | 2 0 0 2 | * * 240 * * * * | 0 0 2 1 0 0 0 | 0 1 2 0 . x3o . . | 3 | 0 3 0 0 | * * * 320 * * * | 1 0 0 0 1 1 0 | 1 1 0 1 . x . *b3x . | 6 | 0 3 3 0 | * * * * 320 * * | 0 1 0 0 1 0 1 | 1 0 1 1 . x . . x | 4 | 0 2 0 2 | * * * * * 480 * | 0 0 1 0 0 1 1 | 0 1 1 1 . . . x3x | 6 | 0 0 3 3 | * * * * * * 160 | 0 0 0 1 0 0 2 | 0 0 2 1 -------------+-----+-----------------+-----------------------------+------------------------+------------ x3x3o . . ♦ 12 | 6 12 0 0 | 4 0 0 4 0 0 0 | 80 * * * * * * | 1 1 0 0 x3x . *b3x . ♦ 24 | 12 12 12 0 | 4 6 0 0 4 0 0 | * 80 * * * * * | 1 0 1 0 x3x . . x ♦ 12 | 6 6 0 6 | 2 0 3 0 0 3 0 | * * 160 * * * * | 0 1 1 0 x . . x3x ♦ 12 | 6 0 6 6 | 0 3 3 0 0 0 2 | * * * 80 * * * | 0 0 2 0 . x3o *b3x . ♦ 12 | 0 12 6 0 | 0 0 0 4 4 0 0 | * * * * 80 * * | 1 0 0 1 . x3o . x ♦ 6 | 0 6 0 3 | 0 0 0 2 0 3 0 | * * * * * 160 * | 0 1 0 1 . x . *b3x3x ♦ 24 | 0 12 12 12 | 0 0 0 0 4 6 4 | * * * * * * 80 | 0 0 1 1 -------------+-----+-----------------+-----------------------------+------------------------+------------ x3x3o *b3x . ♦ 96 | 48 96 48 0 | 32 24 0 32 32 0 0 | 8 8 0 0 8 0 0 | 10 * * * x3x3o . x ♦ 24 | 12 24 0 12 | 8 0 6 8 0 12 0 | 2 0 4 0 0 4 0 | * 40 * * x3x . *b3x3x ♦ 120 | 60 60 60 60 | 20 30 30 0 20 30 20 | 0 5 10 10 0 0 5 | * * 16 * . x3o *b3x3x ♦ 60 | 0 60 30 30 | 0 0 0 20 20 30 10 | 0 0 0 0 5 10 5 | * * * 16
x
3 \
x---x---x
3/2 / 3 3
o
x3x3/2o *b3x3x . . . . . | 960 | 1 2 1 1 | 2 1 1 1 2 2 1 | 1 2 2 1 1 1 2 | 1 1 2 1 ---------------+-----+-----------------+-----------------------------+------------------------+------------ x . . . . | 2 | 480 * * * | 2 1 1 0 0 0 0 | 1 2 2 1 0 0 0 | 1 1 2 0 . x . . . | 2 | * 960 * * | 1 0 0 1 1 1 0 | 1 1 1 0 1 1 1 | 1 1 1 1 . . . x . | 2 | * * 480 * | 0 1 0 0 2 0 1 | 0 2 0 1 1 0 2 | 1 0 2 1 . . . . x | 2 | * * * 480 | 0 0 1 0 0 2 1 | 0 0 2 1 0 1 2 | 0 1 2 1 ---------------+-----+-----------------+-----------------------------+------------------------+------------ x3x . . . | 6 | 3 3 0 0 | 320 * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 x . . x . | 4 | 2 0 2 0 | * 240 * * * * * | 0 2 0 1 0 0 0 | 1 0 2 0 x . . . x | 4 | 2 0 0 2 | * * 240 * * * * | 0 0 2 1 0 0 0 | 0 1 2 0 . x3/2o . . | 3 | 0 3 0 0 | * * * 320 * * * | 1 0 0 0 1 1 0 | 1 1 0 1 . x . *b3x . | 6 | 0 3 3 0 | * * * * 320 * * | 0 1 0 0 1 0 1 | 1 0 1 1 . x . . x | 4 | 0 2 0 2 | * * * * * 480 * | 0 0 1 0 0 1 1 | 0 1 1 1 . . . x3x | 6 | 0 0 3 3 | * * * * * * 160 | 0 0 0 1 0 0 2 | 0 0 2 1 ---------------+-----+-----------------+-----------------------------+------------------------+------------ x3x3/2o . . ♦ 12 | 6 12 0 0 | 4 0 0 4 0 0 0 | 80 * * * * * * | 1 1 0 0 x3x . *b3x . ♦ 24 | 12 12 12 0 | 4 6 0 0 4 0 0 | * 80 * * * * * | 1 0 1 0 x3x . . x ♦ 12 | 6 6 0 6 | 2 0 3 0 0 3 0 | * * 160 * * * * | 0 1 1 0 x . . x3x ♦ 12 | 6 0 6 6 | 0 3 3 0 0 0 2 | * * * 80 * * * | 0 0 2 0 . x3/2o *b3x . ♦ 12 | 0 12 6 0 | 0 0 0 4 4 0 0 | * * * * 80 * * | 1 0 0 1 . x3/2o . x ♦ 6 | 0 6 0 3 | 0 0 0 2 0 3 0 | * * * * * 160 * | 0 1 0 1 . x . *b3x3x ♦ 24 | 0 12 12 12 | 0 0 0 0 4 6 4 | * * * * * * 80 | 0 0 1 1 ---------------+-----+-----------------+-----------------------------+------------------------+------------ x3x3/2o *b3x . ♦ 96 | 48 96 48 0 | 32 24 0 32 32 0 0 | 8 8 0 0 8 0 0 | 10 * * * x3x3/2o . x ♦ 24 | 12 24 0 12 | 8 0 6 8 0 12 0 | 2 0 4 0 0 4 0 | * 40 * * x3x . *b3x3x ♦ 120 | 60 60 60 60 | 20 30 30 0 20 30 20 | 0 5 10 10 0 0 5 | * * 16 * . x3/2o *b3x3x ♦ 60 | 0 60 30 30 | 0 0 0 20 20 30 10 | 0 0 0 0 5 10 5 | * * * 16
x3x3x3o4s
demi( . . . . . ) | 960 | 1 1 2 1 | 1 2 2 1 1 1 2 | 2 1 1 1 1 2 2 | 1 1 1 2
------------------+-----+-----------------+-----------------------------+------------------------+------------
demi( x . . . . ) | 2 | 480 * * * | 1 2 0 0 1 0 0 | 2 1 0 1 0 2 0 | 1 1 0 2
demi( . x . . . ) | 2 | * 480 * * | 1 0 2 0 0 1 0 | 2 0 1 1 0 0 2 | 1 0 1 2
demi( . . x . . ) | 2 | * * 960 * | 0 1 1 1 0 0 1 | 1 1 1 0 1 1 1 | 1 1 1 1
. . . o4s | 2 | * * * 480 | 0 0 0 0 1 1 2 | 0 0 0 1 1 2 2 | 0 1 1 2
------------------+-----+-----------------+-----------------------------+------------------------+------------
demi( x3x . . . ) | 6 | 3 3 0 0 | 160 * * * * * * | 2 0 0 1 0 0 0 | 1 0 0 2
demi( x . x . . ) | 4 | 2 0 2 0 | * 480 * * * * * | 1 1 0 0 0 1 0 | 1 1 0 1
demi( . x3x . . ) | 6 | 0 3 3 0 | * * 320 * * * * | 1 0 1 0 0 0 1 | 1 0 1 1
demi( . . x3o . ) | 3 | 0 0 3 0 | * * * 320 * * * | 0 1 1 0 1 0 0 | 1 1 1 0
x . 2 o4s | 4 | 2 0 0 2 | * * * * 240 * * | 0 0 0 1 0 2 0 | 0 1 0 2
. x 2 o4s | 4 | 0 2 0 2 | * * * * * 240 * | 0 0 0 1 0 0 2 | 0 0 1 2
sefa( . . x3o4s ) | 6 | 0 0 3 3 | * * * * * * 320 | 0 0 0 0 1 1 1 | 0 1 1 1
------------------+-----+-----------------+-----------------------------+------------------------+------------
demi( x3x3x . . ) ♦ 24 | 12 12 12 0 | 4 6 4 0 0 0 0 | 80 * * * * * * | 1 0 0 1
demi( x . x3o . ) ♦ 6 | 3 0 6 0 | 0 3 0 2 0 0 0 | * 160 * * * * * | 1 1 0 0
demi( . x3x3o . ) ♦ 12 | 0 6 12 0 | 0 0 4 4 0 0 0 | * * 80 * * * * | 1 0 1 0
x3x 2 o4s ♦ 12 | 6 6 0 6 | 2 0 0 0 3 3 0 | * * * 80 * * * | 0 0 0 2
. . x3o4s ♦ 12 | 0 0 12 6 | 0 0 0 4 0 0 4 | * * * * 80 * * | 0 1 1 0
sefa( x 2 x3o4s ) ♦ 12 | 6 0 6 6 | 0 3 0 0 3 0 2 | * * * * * 160 * | 0 1 0 1
sefa( . x3x3o4s ) ♦ 24 | 0 12 12 12 | 0 0 4 0 0 6 4 | * * * * * * 80 | 0 0 1 1
------------------+-----+-----------------+-----------------------------+------------------------+------------
demi( x3x3x3o . ) ♦ 60 | 30 30 60 0 | 10 30 20 20 0 0 0 | 5 10 5 0 0 0 0 | 16 * * *
x 2 x3o4s ♦ 24 | 12 0 24 12 | 0 12 0 8 6 0 8 | 0 4 0 0 2 4 0 | * 40 * *
. x3x3o4s ♦ 96 | 0 48 96 48 | 0 0 32 32 0 24 32 | 0 0 8 0 8 0 8 | * * 10 *
sefa( x3x3x3o4s ) ♦ 120 | 60 60 60 60 | 20 30 20 0 30 30 20 | 5 0 0 10 0 10 5 | * * * 16
starting figure: x3x3x3o4x
© 2004-2025 | top of page |