Acronym gidpithip
Name great-disprismatotesseractihexadecachoric prism,
great-prismated-tesseract prism,
central segment of cogart
Circumradius sqrt[33+12 sqrt(2)]/2 = 3.534493
Confer
uniform relative:
cogart  

As abstract polyteron gidpithip is isomorphic to gaquidpothip, thereby replacing the octagons by octagrams, resp. replacing girco by quitco and op by stop, resp. replacing gidpith by gaquidpoth, gircope by quitcope, and sodip by sistodip.


Incidence matrix according to Dynkin symbol

x x3x3x4x

. . . . . | 768 |   1   1   1   1   1 |   1   1   1   1   1   1   1   1   1  1 |  1  1  1  1  1  1  1  1  1  1 |  1  1  1 1 1
----------+-----+---------------------+----------------------------------------+-------------------------------+-------------
x . . . . |   2 | 384   *   *   *   * |   1   1   1   1   0   0   0   0   0  0 |  1  1  1  1  1  1  0  0  0  0 |  1  1  1 1 0
. x . . . |   2 |   * 384   *   *   * |   1   0   0   0   1   1   1   0   0  0 |  1  1  1  0  0  0  1  1  1  0 |  1  1  1 0 1
. . x . . |   2 |   *   * 384   *   * |   0   1   0   0   1   0   0   1   1  0 |  1  0  0  1  1  0  1  1  0  1 |  1  1  0 1 1
. . . x . |   2 |   *   *   * 384   * |   0   0   1   0   0   1   0   1   0  1 |  0  1  0  1  0  1  1  0  1  1 |  1  0  1 1 1
. . . . x |   2 |   *   *   *   * 384 |   0   0   0   1   0   0   1   0   1  1 |  0  0  1  0  1  1  0  1  1  1 |  0  1  1 1 1
----------+-----+---------------------+----------------------------------------+-------------------------------+-------------
x x . . . |   4 |   2   2   0   0   0 | 192   *   *   *   *   *   *   *   *  * |  1  1  1  0  0  0  0  0  0  0 |  1  1  1 0 0
x . x . . |   4 |   2   0   2   0   0 |   * 192   *   *   *   *   *   *   *  * |  1  0  0  1  1  0  0  0  0  0 |  1  1  0 1 0
x . . x . |   4 |   2   0   0   2   0 |   *   * 192   *   *   *   *   *   *  * |  0  1  0  1  0  1  0  0  0  0 |  1  0  1 1 0
x . . . x |   4 |   2   0   0   0   2 |   *   *   * 192   *   *   *   *   *  * |  0  0  1  0  1  1  0  0  0  0 |  0  1  1 1 0
. x3x . . |   6 |   0   3   3   0   0 |   *   *   *   * 128   *   *   *   *  * |  1  0  0  0  0  0  1  1  0  0 |  1  1  0 0 1
. x . x . |   4 |   0   2   0   2   0 |   *   *   *   *   * 192   *   *   *  * |  0  1  0  0  0  0  1  0  1  0 |  1  0  1 0 1
. x . . x |   4 |   0   2   0   0   2 |   *   *   *   *   *   * 192   *   *  * |  0  0  1  0  0  0  0  1  1  0 |  0  1  1 0 1
. . x3x . |   6 |   0   0   3   3   0 |   *   *   *   *   *   *   * 128   *  * |  0  0  0  1  0  0  1  0  0  1 |  1  0  0 1 1
. . x . x |   4 |   0   0   2   0   2 |   *   *   *   *   *   *   *   * 192  * |  0  0  0  0  1  0  0  1  0  1 |  0  1  0 1 1
. . . x4x |   8 |   0   0   0   4   4 |   *   *   *   *   *   *   *   *   * 96 |  0  0  0  0  0  1  0  0  1  1 |  0  0  1 1 1
----------+-----+---------------------+----------------------------------------+-------------------------------+-------------
x x3x . .   12 |   6   6   6   0   0 |   3   3   0   0   2   0   0   0   0  0 | 64  *  *  *  *  *  *  *  *  * |  1  1  0 0 0
x x . x .    8 |   4   4   0   4   0 |   2   0   2   0   0   2   0   0   0  0 |  * 96  *  *  *  *  *  *  *  * |  1  0  1 0 0
x x . . x    8 |   4   4   0   0   4 |   2   0   0   2   0   0   2   0   0  0 |  *  * 96  *  *  *  *  *  *  * |  0  1  1 0 0
x . x3x .   12 |   6   0   6   6   0 |   0   3   3   0   0   0   0   2   0  0 |  *  *  * 64  *  *  *  *  *  * |  1  0  0 1 0
x . x . x    8 |   4   0   4   0   4 |   0   2   0   2   0   0   0   0   2  0 |  *  *  *  * 96  *  *  *  *  * |  0  1  0 1 0
x . . x4x   16 |   8   0   0   8   8 |   0   0   4   4   0   0   0   0   0  2 |  *  *  *  *  * 48  *  *  *  * |  0  0  1 1 0
. x3x3x .   24 |   0  12  12  12   0 |   0   0   0   0   4   6   0   4   0  0 |  *  *  *  *  *  * 32  *  *  * |  1  0  0 0 1
. x3x . x   12 |   0   6   6   0   6 |   0   0   0   0   2   0   3   0   3  0 |  *  *  *  *  *  *  * 64  *  * |  0  1  0 0 1
. x . x4x   16 |   0   8   0   8   8 |   0   0   0   0   0   4   4   0   0  2 |  *  *  *  *  *  *  *  * 48  * |  0  0  1 0 1
. . x3x4x   48 |   0   0  24  24  24 |   0   0   0   0   0   0   0   8  12  6 |  *  *  *  *  *  *  *  *  * 16 |  0  0  0 1 1
----------+-----+---------------------+----------------------------------------+-------------------------------+-------------
x x3x3x .   48 |  24  24  24  24   0 |  12  12  12   0   8  12   0   8   0  0 |  4  6  0  4  0  0  2  0  0  0 | 16  *  * * *
x x3x . x   24 |  12  12  12   0  12 |   6   6   0   6   4   0   6   0   6  0 |  2  0  3  0  3  0  0  2  0  0 |  * 32  * * *
x x . x4x   32 |  16  16   0  16  16 |   8   0   8   8   0   8   8   0   0  4 |  0  4  4  0  0  2  0  0  2  0 |  *  * 24 * *
x . x3x4x   96 |  48   0  48  48  48 |   0  24  24  24   0   0   0  16  24 12 |  0  0  0  8 12  6  0  0  0  2 |  *  *  * 8 *
. x3x3x4x  384 |   0 192 192 192 192 |   0   0   0   0  64  96  96  64  96 48 |  0  0  0  0  0  0 16 32 24  8 |  *  *  * * 2

© 2004-2019
top of page