Acronym | quercope |
Name | quasirhombicuboctahedron prism |
Cross sections |
© |
Circumradius | sqrt[(3-sqrt(2))/2] = 0.890446 |
Colonel of regiment | goccope |
Dihedral angles | |
Face vector | 48, 120, 100, 28 |
Confer | |
External links |
As abstract polytope quercope is isomorphic to sircope, thereby replacing retrograde trips by prograde ones and querco by sirco.
The blend of 4 quercopes results in gahfipto.
Incidence matrix according to Dynkin symbol
x x3o4/3x . . . . | 48 | 1 2 2 | 2 2 1 2 1 | 1 2 1 1 ----------+----+----------+----------------+--------- x . . . | 2 | 24 * * | 2 2 0 0 0 | 1 2 1 0 . x . . | 2 | * 48 * | 1 0 1 1 0 | 1 1 0 1 . . . x | 2 | * * 48 | 0 1 0 1 1 | 0 1 1 1 ----------+----+----------+----------------+--------- x x . . | 4 | 2 2 0 | 24 * * * * | 1 1 0 0 x . . x | 4 | 2 0 2 | * 24 * * * | 0 1 1 0 . x3o . | 3 | 0 3 0 | * * 16 * * | 1 0 0 1 . x . x | 4 | 0 2 2 | * * * 24 * | 0 1 0 1 . . o4/3x | 4 | 0 0 4 | * * * * 12 | 0 0 1 1 ----------+----+----------+----------------+--------- x x3o . ♦ 6 | 3 6 0 | 3 0 2 0 0 | 8 * * * x x . x ♦ 8 | 4 4 4 | 2 2 0 2 0 | * 12 * * x . o4/3x ♦ 8 | 4 0 8 | 0 4 0 0 2 | * * 6 * . x3o4/3x ♦ 24 | 0 24 24 | 0 0 8 12 6 | * * * 2
x x3/2o4x . . . . | 48 | 1 2 2 | 2 2 1 2 1 | 1 2 1 1 ----------+----+----------+----------------+--------- x . . . | 2 | 24 * * | 2 2 0 0 0 | 1 2 1 0 . x . . | 2 | * 48 * | 1 0 1 1 0 | 1 1 0 1 . . . x | 2 | * * 48 | 0 1 0 1 1 | 0 1 1 1 ----------+----+----------+----------------+--------- x x . . | 4 | 2 2 0 | 24 * * * * | 1 1 0 0 x . . x | 4 | 2 0 2 | * 24 * * * | 0 1 1 0 . x3/2o . | 3 | 0 3 0 | * * 16 * * | 1 0 0 1 . x . x | 4 | 0 2 2 | * * * 24 * | 0 1 0 1 . . o4x | 4 | 0 0 4 | * * * * 12 | 0 0 1 1 ----------+----+----------+----------------+--------- x x3/2o . ♦ 6 | 3 6 0 | 3 0 2 0 0 | 8 * * * x x . x ♦ 8 | 4 4 4 | 2 2 0 2 0 | * 12 * * x . o4x ♦ 8 | 4 0 8 | 0 4 0 0 2 | * * 6 * . x3/2o4x ♦ 24 | 0 24 24 | 0 0 8 12 6 | * * * 2
xx3oo4/3xx&#x → height = 1
(querco || querco)
o.3o.4/3o. | 24 * | 2 2 1 0 0 | 1 2 1 2 2 0 0 0 | 1 1 2 1 0
.o3.o4/3.o | * 24 | 0 0 1 2 2 | 0 0 0 2 2 1 2 1 | 0 1 2 1 1
--------------+-------+----------------+---------------------+-----------
x. .. .. | 2 0 | 24 * * * * | 1 1 0 1 0 0 0 0 | 1 1 1 0 0
.. .. x. | 2 0 | * 24 * * * | 0 1 1 0 1 0 0 0 | 1 0 1 1 0
oo3oo4/3oo&#x | 1 1 | * * 24 * * | 0 0 0 2 2 0 0 0 | 0 1 2 1 0
.x .. .. | 0 2 | * * * 24 * | 0 0 0 1 0 1 1 0 | 0 1 1 0 1
.. .. .x | 0 2 | * * * * 24 | 0 0 0 0 1 0 1 1 | 0 0 1 1 1
--------------+-------+----------------+---------------------+-----------
x.3o. .. | 3 0 | 3 0 0 0 0 | 8 * * * * * * * | 1 1 0 0 0
x. .. x. | 4 0 | 2 2 0 0 0 | * 12 * * * * * * | 1 0 1 0 0
.. o.4/3x. | 4 0 | 0 4 0 0 0 | * * 6 * * * * * | 1 0 0 1 0
xx .. ..&#x | 2 2 | 1 0 2 1 0 | * * * 24 * * * * | 0 1 1 0 0
.. .. xx&#x | 2 2 | 0 1 2 0 1 | * * * * 24 * * * | 0 0 1 1 0
.x3.o .. | 0 3 | 0 0 0 3 0 | * * * * * 8 * * | 0 1 0 0 1
.x .. .x | 0 4 | 0 0 0 2 2 | * * * * * * 12 * | 0 0 1 0 1
.. .o4/3.x | 0 4 | 0 0 0 0 4 | * * * * * * * 6 | 0 0 0 1 1
--------------+-------+----------------+---------------------+-----------
x.3o.4/3x. ♦ 24 0 | 24 24 0 0 0 | 8 12 6 0 0 0 0 0 | 1 * * * *
xx3oo ..&#x ♦ 3 3 | 3 0 3 3 0 | 1 0 0 3 0 1 0 0 | * 8 * * *
xx .. xx&#x ♦ 4 4 | 2 2 4 2 2 | 0 1 0 2 2 0 1 0 | * * 12 * *
.. oo4/3xx&#x ♦ 4 4 | 0 4 4 0 4 | 0 0 1 0 4 0 0 1 | * * * 6 *
.x3.o4/3.x ♦ 0 24 | 0 0 0 24 24 | 0 0 0 0 0 8 12 6 | * * * * 1
© 2004-2025 | top of page |