Acronym quercope Name quasirhombicuboctahedron prism Cross sections © Circumradius sqrt[(3-sqrt(2))/2] = 0.890446 Colonel of regiment goccope Dihedral angles at {4} between cube and querco:   90° at {3} between querco and trip:   90° at {4} between cube and cube:   45° at {4} between cube and trip:   arccos(sqrt(2/3)) = 35.264390° Confer uniform relative: goccope   quidpith   blends: gahfipto Externallinks

As abstract polytope quercope is isomorphic to sircope, thereby replacing retrograde trips by prograde ones and querco by sirco.

The blend of 4 quercopes results in gahfipto.

Incidence matrix according to Dynkin symbol

x x3o4/3x

. . .   . | 48 |  1  2  2 |  2  2  1  2  1 | 1  2 1 1
----------+----+----------+----------------+---------
x . .   . |  2 | 24  *  * |  2  2  0  0  0 | 1  2 1 0
. x .   . |  2 |  * 48  * |  1  0  1  1  0 | 1  1 0 1
. . .   x |  2 |  *  * 48 |  0  1  0  1  1 | 0  1 1 1
----------+----+----------+----------------+---------
x x .   . |  4 |  2  2  0 | 24  *  *  *  * | 1  1 0 0
x . .   x |  4 |  2  0  2 |  * 24  *  *  * | 0  1 1 0
. x3o   . |  3 |  0  3  0 |  *  * 16  *  * | 1  0 0 1
. x .   x |  4 |  0  2  2 |  *  *  * 24  * | 0  1 0 1
. . o4/3x |  4 |  0  0  4 |  *  *  *  * 12 | 0  0 1 1
----------+----+----------+----------------+---------
x x3o   .   6 |  3  6  0 |  3  0  2  0  0 | 8  * * *
x x .   x   8 |  4  4  4 |  2  2  0  2  0 | * 12 * *
x . o4/3x   8 |  4  0  8 |  0  4  0  0  2 | *  * 6 *
. x3o4/3x  24 |  0 24 24 |  0  0  8 12  6 | *  * * 2

x x3/2o4x

. .   . . | 48 |  1  2  2 |  2  2  1  2  1 | 1  2 1 1
----------+----+----------+----------------+---------
x .   . . |  2 | 24  *  * |  2  2  0  0  0 | 1  2 1 0
. x   . . |  2 |  * 48  * |  1  0  1  1  0 | 1  1 0 1
. .   . x |  2 |  *  * 48 |  0  1  0  1  1 | 0  1 1 1
----------+----+----------+----------------+---------
x x   . . |  4 |  2  2  0 | 24  *  *  *  * | 1  1 0 0
x .   . x |  4 |  2  0  2 |  * 24  *  *  * | 0  1 1 0
. x3/2o . |  3 |  0  3  0 |  *  * 16  *  * | 1  0 0 1
. x   . x |  4 |  0  2  2 |  *  *  * 24  * | 0  1 0 1
. .   o4x |  4 |  0  0  4 |  *  *  *  * 12 | 0  0 1 1
----------+----+----------+----------------+---------
x x3/2o .   6 |  3  6  0 |  3  0  2  0  0 | 8  * * *
x x   . x   8 |  4  4  4 |  2  2  0  2  0 | * 12 * *
x .   o4x   8 |  4  0  8 |  0  4  0  0  2 | *  * 6 *
. x3/2o4x  24 |  0 24 24 |  0  0  8 12  6 | *  * * 2

xx3oo4/3xx&#x   → height = 1
(querco || querco)

o.3o.4/3o.    | 24  * |  2  2  1  0  0 | 1  2 1  2  2 0  0 0 | 1 1  2 1 0
.o3.o4/3.o    |  * 24 |  0  0  1  2  2 | 0  0 0  2  2 1  2 1 | 0 1  2 1 1
--------------+-------+----------------+---------------------+-----------
x. ..   ..    |  2  0 | 24  *  *  *  * | 1  1 0  1  0 0  0 0 | 1 1  1 0 0
.. ..   x.    |  2  0 |  * 24  *  *  * | 0  1 1  0  1 0  0 0 | 1 0  1 1 0
oo3oo4/3oo&#x |  1  1 |  *  * 24  *  * | 0  0 0  2  2 0  0 0 | 0 1  2 1 0
.x ..   ..    |  0  2 |  *  *  * 24  * | 0  0 0  1  0 1  1 0 | 0 1  1 0 1
.. ..   .x    |  0  2 |  *  *  *  * 24 | 0  0 0  0  1 0  1 1 | 0 0  1 1 1
--------------+-------+----------------+---------------------+-----------
x.3o.   ..    |  3  0 |  3  0  0  0  0 | 8  * *  *  * *  * * | 1 1  0 0 0
x. ..   x.    |  4  0 |  2  2  0  0  0 | * 12 *  *  * *  * * | 1 0  1 0 0
.. o.4/3x.    |  4  0 |  0  4  0  0  0 | *  * 6  *  * *  * * | 1 0  0 1 0
xx ..   ..&#x |  2  2 |  1  0  2  1  0 | *  * * 24  * *  * * | 0 1  1 0 0
.. ..   xx&#x |  2  2 |  0  1  2  0  1 | *  * *  * 24 *  * * | 0 0  1 1 0
.x3.o   ..    |  0  3 |  0  0  0  3  0 | *  * *  *  * 8  * * | 0 1  0 0 1
.x ..   .x    |  0  4 |  0  0  0  2  2 | *  * *  *  * * 12 * | 0 0  1 0 1
.. .o4/3.x    |  0  4 |  0  0  0  0  4 | *  * *  *  * *  * 6 | 0 0  0 1 1
--------------+-------+----------------+---------------------+-----------
x.3o.4/3x.     24  0 | 24 24  0  0  0 | 8 12 6  0  0 0  0 0 | 1 *  * * *
xx3oo   ..&#x   3  3 |  3  0  3  3  0 | 1  0 0  3  0 1  0 0 | * 8  * * *
xx ..   xx&#x   4  4 |  2  2  4  2  2 | 0  1 0  2  2 0  1 0 | * * 12 * *
.. oo4/3xx&#x   4  4 |  0  4  4  0  4 | 0  0 1  0  4 0  0 1 | * *  * 6 *
.x3.o4/3.x      0 24 |  0  0  0 24 24 | 0  0 0  0  0 8 12 6 | * *  * * 1