search
Saturday, 2015 May 9, 19:24 — games, mathematics

alternate poker

Suppose your deck has more than four suits, or some number other than thirteen cards per suit. What happens to the ranks of poker hands?

              1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3
    5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

 4  F F F * B B B * O O O A A A A A A A A A A A A A A A A A 
 5  F F F F F F F B B B B B O O A A A A A A A A A A A D D D 
 6  F F F F F F F F F F F B B B B B B A A D D D D D D D D D 
 7  F F F F F F F F F F F F F F F B C C C C E E D D D D D D 
 8  F F F F F F F F F F F F F F G G G G G C C C C C E E E D 
 9  F F F F F F F F F F F F F G G G G G G G G G G C C C C E 
10  F F F F F F F F F F F F G G G G G G G G G G G G G G G G 
11  F F F F F F F F F F F G G G G G G G G G G G G G G G G G
12  F F F F F F F F F F G G G G G G G G G G G G G G G G G G
13  F F F F F F F F F F G G G G G G G G G G G G G G G G G G
14  F F F F F F F F F G G G G G G G G G G G G G G G G G G G
15  F F F F F F F F F G G G G G G G G G G G G G G G G G G G
16  F F F F F F F F F G G G G G G G G G G G G G G G G G G G

O: the familiar case: straight flush > four of a kind > full house > flush > straight > three of a kind > two pair > one pair.
A: four > full house > straight > flush.
B: four > flush > full house > straight.
C: four > flush > straight > full house.
D: four > straight > full house > flush.
E: four > straight > flush > full house.
F: flush > four > full house > straight.
G: flush > four > straight > full house.
*: surprisingly only two cases where two of the scoring hands are equally rare: with four suits and twelve ranks, flush = full house; with four suits and eight ranks, flush = four.

Subscribe without commenting

RSS feed for comments on this post.

Leave a comment