Acronym raddirag
Name rhombidodecahedraly-diminished rectified hexacontatetrapeton
Circumradius 1
Lace hyper city
in approx. ASCII-art
         
         
    O    
         
         
    O    
         
O   C   O
         
    O    
         
         
    O    
         
         
where:
O = x3o4o (oct)
C = o3x4o (co)
Face vector 48, 312, 758, 906, 532, 120
Confer
uniform relative:
rag  
related scaliform:
xedrag  

This polypeton is obtained from rag when the vertices of a vertex-inscribed co would be chopped off. Alternativevely the same effect would be obtained if the intersection of rag and an accordingly scaled rad (times codimensional space).

(Note that there is a further, evenmore scaliform dodecadiminished rag as well. That one would be obtained by diminishing at the vertices of an inscribed gee or as intersection with an accordingly scaled hexeract. Accordingly that one then is known as xedrag.)


Incidence matrix according to Dynkin symbol

xo3ox4oo xo3oo4oo&#zx   → height = 0
(tegum sum of an octahedral duoprism and a central cuboctahedron)

o.3o.4o. o.3o.4o.     | 36  * |  4  4   4  0 |  4  16  4  4   4  16 0 0 | 1 16 16  4  16  1  16  16 |  4 16 16 16  4  16 | 4 16  4
.o3.o4.o .o3.o4.o     |  * 12 |  0  0  12  4 |  0   0  0  6  24  24 2 2 | 0  0  0 12  12 12  48  16 |  0  0 24  8 24  32 | 0 16 16
----------------------+-------+--------------+--------------------------+---------------------------+--------------------+--------
x. .. .. .. .. ..     |  2  0 | 72  *   *  * |  2   4  0  1   0   0 0 0 | 1  8  4  2   4  0   0   0 |  4  8  8  4  0   0 | 4  8  0
.. .. .. x. .. ..     |  2  0 |  * 72   *  * |  0   4  2  0   0   4 0 0 | 0  4  8  0   4  0   4   8 |  1  8  4  8  1   8 | 2  8  2
oo3oo4oo oo3oo4oo&#x  |  1  1 |  *  * 144  * |  0   0  0  1   2   4 0 0 | 0  0  0  2   4  1   8   4 |  0  0  8  4  4   8 | 0  8  4
.. .x .. .. .. ..     |  0  2 |  *  *   * 24 |  0   0  0  0   6   0 1 1 | 0  0  0  6   0  6  12   0 |  0  0 12  0 12   8 | 0  8  8
----------------------+-------+--------------+--------------------------+---------------------------+--------------------+--------
x.3o. .. .. .. ..     |  3  0 |  3  0   0  0 | 48   *  *  *   *   * * * | 1  4  0  1   0  0   0   0 |  4  4  4  0  0   0 | 4  4  0
x. .. .. x. .. ..     |  4  0 |  2  2   0  0 |  * 144  *  *   *   * * * | 0  2  2  0   1  0   0   0 |  1  4  2  2  0   0 | 2  4  0
.. .. .. x.3o. ..     |  3  0 |  0  3   0  0 |  *   * 48  *   *   * * * | 0  0  4  0   0  0   0   4 |  0  4  0  4  0   4 | 1  4  1
xo .. .. .. .. ..&#x  |  2  1 |  1  0   2  0 |  *   *  * 72   *   * * * | 0  0  0  2   4  0   0   0 |  0  0  8  4  0   0 | 0  8  0
.. ox .. .. .. ..&#x  |  1  2 |  0  0   2  1 |  *   *  *  * 144   * * * | 0  0  0  1   0  1   4   0 |  0  0  4  0  4   4 | 0  4  4
.. .. .. xo .. ..&#x  |  2  1 |  0  1   2  0 |  *   *  *  *   * 288 * * | 0  0  0  0   1  0   2   2 |  0  0  2  2  1   4 | 0  4  2
.o3.x .. .. .. ..     |  0  3 |  0  0   0  3 |  *   *  *  *   *   * 8 *  0  0  0  6   0  0   0   0 |  0  0 12  0  0   0 | 0  8  0
.. .x4.o .. .. ..     |  0  4 |  0  0   0  4 |  *   *  *  *   *   * * 6  0  0  0  0   0  6   0   0 |  0  0  0  0 12   0 | 0  0  8
----------------------+-------+--------------+--------------------------+---------------------------+--------------------+--------
x.3o.4o. .. .. ..       6  0 | 12  0   0  0 |  8   0  0  0   0   0 0 0 | 6  *  *  *   *  *   *   * |  4  0  0  0  0   0 | 4  0  0
x.3o. .. x. .. ..       6  0 |  6  3   0  0 |  2   3  0  0   0   0 0 0 | * 96  *  *   *  *   *   * |  1  2  1  0  0   0 | 2  2  0
x. .. .. x.3o. ..       6  0 |  3  6   0  0 |  0   3  2  0   0   0 0 0 | *  * 96  *   *  *   *   * |  0  2  0  1  0   0 | 1  2  0
xo3ox .. .. .. ..&#x    3  3 |  3  0   6  3 |  1   0  0  3   3   0 1 0 | *  *  * 48   *  *   *   * |  0  0  4  0  0   0 | 0  4  0
xo .. .. xo .. ..&#x    4  1 |  2  2   4  0 |  0   1  0  2   0   2 0 0 | *  *  *  * 144  *   *   * |  0  0  2  2  0   0 | 0  4  0
.. ox4oo .. .. ..&#x    1  4 |  0  0   4  4 |  0   0  0  0   4   0 0 1 | *  *  *  *   * 36   *   * |  0  0  0  0  4   0 | 0  0  4
.. ox .. xo .. ..&#x    2  2 |  0  1   4  1 |  0   0  0  0   2   2 0 0 | *  *  *  *   *  * 288   * |  0  0  1  0  1   2 | 0  2  2
.. .. .. xo3oo ..&#x    3  1 |  0  3   3  0 |  0   0  1  0   0   3 0 0 | *  *  *  *   *  *   * 192 |  0  0  0  1  0   2 | 0  2  1
----------------------+-------+--------------+--------------------------+---------------------------+--------------------+--------
x.3o.4o. x. .. ..      12  0 | 24  6   0  0 | 16  12  0  0   0   0 0 0 | 2  8  0  0   0  0   0   0 | 12  *  *  *  *   * | 2  0  0
x.3o. .. x.3o. ..&#x    9  0 |  9  9   0  0 |  3   9  3  0   0   0 0 0 | 0  3  3  0   0  0   0   0 |  * 64  *  *  *   * | 1  1  0
xo3ox .. xo .. ..&#x    6  3 |  6  3  12  3 |  2   3  0  6   6   6 1 0 | 0  1  0  2   3  0   3   0 |  *  * 96  *  *   * | 0  2  0
xo .. .. xo3oo ..&#x    6  1 |  3  6   6  0 |  0   3  2  3   0   6 0 0 | 0  0  1  0   3  0   0   2 |  *  *  * 96  *   * | 0  2  0
.. ox4oo xo .. ..&#x    2  4 |  0  1   8  4 |  0   0  0  0   8   4 0 1 | 0  0  0  0   0  2   4   0 |  *  *  *  * 72   * | 0  0  2
.. ox .. xo3oo ..&#x    3  2 |  0  3   6  1 |  0   0  1  0   3   6 0 0 | 0  0  0  0   0  0   3   2 |  *  *  *  *  * 192 | 0  1  1
----------------------+-------+--------------+--------------------------+---------------------------+--------------------+--------
x.3o.4o. x.3o. ..      18  0 | 36 18   0  0 | 24  36  6  0   0   0 0 0 | 3 24 12  0   0  0   0   0 |  3  8  0  0  0   0 | 8  *  *
xo3ox .. xo3oo ..&#x    9  3 |  9  9  18  3 |  3   9  3  9   9  18 1 0 | 0  3  3  3   9  0   9   6 |  0  1  3  3  0   3 | * 64  *
.. ox4oo xo3oo ..&#x    3  4 |  0  3  12  4 |  0   0  1  0  12  12 0 1 | 0  0  0  0   0  3  12   4 |  0  0  0  0  3   4 | *  * 48

© 2004-2025
top of page