Acronym | gorcrin |
Name | great retrocelligreat rhombated penteract |
Field of sections |
© |
Circumradius | sqrt[41-16 sqrt(2)]/2 = 2.143163 |
Vertex figure |
© |
Colonel of regiment | quacgarn |
Face vector | 1920, 5760, 5680, 2080, 212 |
Confer |
|
External links |
As abstract polytope gorcgrin is isomorphic to srocgrin, thereby replacing octagrams by octagons, resp. stop by op and quitco by girco, resp. tistodip by todip, gaquidpoth by gidpith, and gaqrit by grit.
Incidence matrix according to Dynkin symbol
x4/3x3x3x3/2o3*c . . . . . | 1920 | 1 1 2 2 | 1 2 2 2 2 2 1 1 | 2 2 2 1 1 2 1 1 1 | 2 1 1 1 1 -----------------+------+-------------------+---------------------------------+------------------------------------+--------------- x . . . . | 2 | 960 * * * | 1 2 2 0 0 0 0 0 | 2 2 2 1 1 0 0 0 0 | 2 1 1 1 0 . x . . . | 2 | * 960 * * | 1 0 0 2 2 0 0 0 | 2 2 0 0 0 2 1 1 0 | 2 1 1 0 1 . . x . . | 2 | * * 1920 * | 0 1 0 1 0 1 1 0 | 1 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . x . | 2 | * * * 1920 | 0 0 1 0 1 1 0 1 | 0 1 1 0 1 1 0 1 1 | 1 0 1 1 1 -----------------+------+-------------------+---------------------------------+------------------------------------+--------------- x4/3x . . . | 8 | 4 4 0 0 | 240 * * * * * * * | 2 2 0 0 0 0 0 0 0 | 2 1 1 0 0 x . x . . | 4 | 2 0 2 0 | * 960 * * * * * * | 1 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 0 2 | * * 960 * * * * * | 0 1 1 0 1 0 0 0 0 | 1 0 1 1 0 . x3x . . | 6 | 0 3 3 0 | * * * 640 * * * * | 1 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . x . | 4 | 0 2 0 2 | * * * * 960 * * * | 0 1 0 0 0 1 0 1 0 | 1 0 1 0 1 . . x3x . | 6 | 0 0 3 3 | * * * * * 640 * * | 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . o3*c | 3 | 0 0 3 0 | * * * * * * 640 * | 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . x3/2o | 3 | 0 0 0 3 | * * * * * * * 640 | 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 -----------------+------+-------------------+---------------------------------+------------------------------------+--------------- x4/3x3x . . ♦ 48 | 24 24 24 0 | 6 12 0 8 0 0 0 0 | 80 * * * * * * * * | 1 1 0 0 0 x4/3x . x . ♦ 16 | 8 8 0 8 | 2 0 4 0 4 0 0 0 | * 240 * * * * * * * | 1 0 1 0 0 x . x3x . ♦ 12 | 6 0 6 6 | 0 3 3 0 0 2 0 0 | * * 320 * * * * * * | 1 0 0 1 0 x . x . o3*c ♦ 6 | 3 0 6 0 | 0 3 0 0 0 0 2 0 | * * * 320 * * * * * | 0 1 0 1 0 x . . x3/2o ♦ 6 | 3 0 0 6 | 0 0 3 0 0 0 0 2 | * * * * 320 * * * * | 0 0 1 1 0 . x3x3x ♦ 24 | 0 12 12 12 | 0 0 0 4 6 4 0 0 | * * * * * 160 * * * | 1 0 0 0 1 . x3x . o3*c ♦ 12 | 0 6 12 0 | 0 0 0 4 0 0 4 0 | * * * * * * 160 * * | 0 1 0 0 1 . x . x3/2o ♦ 6 | 0 3 0 6 | 0 0 0 0 3 0 0 2 | * * * * * * * 320 * | 0 0 1 0 1 . . x3x3/2o3*c ♦ 12 | 0 0 12 12 | 0 0 0 0 0 4 4 4 | * * * * * * * * 160 | 0 0 0 1 1 -----------------+------+-------------------+---------------------------------+------------------------------------+--------------- x4/3x3x3x . ♦ 384 | 192 192 192 192 | 48 96 96 64 96 64 0 0 | 8 24 32 0 0 16 0 0 0 | 10 * * * * x4/3x3x . o3*c ♦ 192 | 96 96 192 0 | 24 96 0 64 0 0 64 0 | 8 0 0 32 0 0 16 0 0 | * 10 * * * x4/3x . x3/2o ♦ 24 | 12 12 0 24 | 3 0 12 0 12 0 0 8 | 0 3 0 0 4 0 0 4 0 | * * 80 * * x . x3x3/2o3*c ♦ 24 | 12 0 24 24 | 0 12 12 0 0 8 8 8 | 0 0 4 4 4 0 0 0 2 | * * * 80 * . x3x3x3/2o3*c ♦ 60 | 0 30 60 60 | 0 0 0 20 30 20 20 20 | 0 0 0 0 0 5 5 10 5 | * * * * 32
x4/3x3x3x3o3/2*c . . . . . | 1920 | 1 1 2 2 | 1 2 2 2 2 2 1 1 | 2 2 2 1 1 2 1 1 1 | 2 1 1 1 1 -----------------+------+-------------------+---------------------------------+------------------------------------+--------------- x . . . . | 2 | 960 * * * | 1 2 2 0 0 0 0 0 | 2 2 2 1 1 0 0 0 0 | 2 1 1 1 0 . x . . . | 2 | * 960 * * | 1 0 0 2 2 0 0 0 | 2 2 0 0 0 2 1 1 0 | 2 1 1 0 1 . . x . . | 2 | * * 1920 * | 0 1 0 1 0 1 1 0 | 1 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . x . | 2 | * * * 1920 | 0 0 1 0 1 1 0 1 | 0 1 1 0 1 1 0 1 1 | 1 0 1 1 1 -----------------+------+-------------------+---------------------------------+------------------------------------+--------------- x4/3x . . . | 8 | 4 4 0 0 | 240 * * * * * * * | 2 2 0 0 0 0 0 0 0 | 2 1 1 0 0 x . x . . | 4 | 2 0 2 0 | * 960 * * * * * * | 1 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 0 2 | * * 960 * * * * * | 0 1 1 0 1 0 0 0 0 | 1 0 1 1 0 . x3x . . | 6 | 0 3 3 0 | * * * 640 * * * * | 1 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . x . | 4 | 0 2 0 2 | * * * * 960 * * * | 0 1 0 0 0 1 0 1 0 | 1 0 1 0 1 . . x3x . | 6 | 0 0 3 3 | * * * * * 640 * * | 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . o3/2*c | 3 | 0 0 3 0 | * * * * * * 640 * | 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . x3o | 3 | 0 0 0 3 | * * * * * * * 640 | 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 -----------------+------+-------------------+---------------------------------+------------------------------------+--------------- x4/3x3x . . ♦ 48 | 24 24 24 0 | 6 12 0 8 0 0 0 0 | 80 * * * * * * * * | 1 1 0 0 0 x4/3x . x . ♦ 16 | 8 8 0 8 | 2 0 4 0 4 0 0 0 | * 240 * * * * * * * | 1 0 1 0 0 x . x3x . ♦ 12 | 6 0 6 6 | 0 3 3 0 0 2 0 0 | * * 320 * * * * * * | 1 0 0 1 0 x . x . o3/2*c ♦ 6 | 3 0 6 0 | 0 3 0 0 0 0 2 0 | * * * 320 * * * * * | 0 1 0 1 0 x . . x3o ♦ 6 | 3 0 0 6 | 0 0 3 0 0 0 0 2 | * * * * 320 * * * * | 0 0 1 1 0 . x3x3x ♦ 24 | 0 12 12 12 | 0 0 0 4 6 4 0 0 | * * * * * 160 * * * | 1 0 0 0 1 . x3x . o3/2*c ♦ 12 | 0 6 12 0 | 0 0 0 4 0 0 4 0 | * * * * * * 160 * * | 0 1 0 0 1 . x . x3o ♦ 6 | 0 3 0 6 | 0 0 0 0 3 0 0 2 | * * * * * * * 320 * | 0 0 1 0 1 . . x3x3o3/2*c ♦ 12 | 0 0 12 12 | 0 0 0 0 0 4 4 4 | * * * * * * * * 160 | 0 0 0 1 1 -----------------+------+-------------------+---------------------------------+------------------------------------+--------------- x4/3x3x3x . ♦ 384 | 192 192 192 192 | 48 96 96 64 96 64 0 0 | 8 24 32 0 0 16 0 0 0 | 10 * * * * x4/3x3x . o3/2*c ♦ 192 | 96 96 192 0 | 24 96 0 64 0 0 64 0 | 8 0 0 32 0 0 16 0 0 | * 10 * * * x4/3x . x3o ♦ 24 | 12 12 0 24 | 3 0 12 0 12 0 0 8 | 0 3 0 0 4 0 0 4 0 | * * 80 * * x . x3x3o3/2*c ♦ 24 | 12 0 24 24 | 0 12 12 0 0 8 8 8 | 0 0 4 4 4 0 0 0 2 | * * * 80 * . x3x3x3o3/2*c ♦ 60 | 0 30 60 60 | 0 0 0 20 30 20 20 20 | 0 0 0 0 0 5 5 10 5 | * * * * 32
© 2004-2024 | top of page |