Acronym | pextico |
Name | partially (mono-)expanded tico |
Lace city in approx. ASCII-art |
x4o u4o x4q x4q u4o x4o x4o D4o u4q u4q D4o x4o u4o D4o x4Q x4Q D4o u4o D = 3x x4q u4q x4Q x4Q u4q x4q Q = 2q u4o D4o x4Q x4Q D4o u4o x4o D4o u4q u4q D4o x4o x4o u4o x4q x4q u4o x4o |
Face vector | 240, 480, 296, 56 |
Confer |
|
The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.
Incidence matrix according to Dynkin symbol
xuxxxxux3xxuxxuxx4oooqqooo&#xt → all but central heights = 1/sqrt(2) = 0.707107 central height = 1 (toe || (u,x)-toe || (x,u)-toe || (x,x,q)-girco || (x,x,q)-girco || (x,u)-toe || (u,x)-toe || toe) o.......3o.......4o....... & | 48 * * * | 1 2 1 0 0 0 0 0 0 0 | 2 1 1 2 0 0 0 0 0 0 0 | 1 2 1 0 0 0 .o......3.o......4.o...... & | * 48 * * | 0 0 1 2 1 0 0 0 0 0 | 0 0 1 2 1 2 0 0 0 0 0 | 0 2 1 1 0 0 ..o.....3..o.....4..o..... & | * * 48 * | 0 0 0 0 1 1 2 0 0 0 | 0 0 1 0 0 2 2 1 0 0 0 | 0 2 0 1 1 0 ...o....3...o....4...o.... & | * * * 96 | 0 0 0 0 0 0 1 1 1 1 | 0 0 0 0 0 1 1 1 1 1 1 | 0 1 0 1 1 1 ---------------------------------+-------------+-------------------------------+----------------------------------+--------------- x....... ........ ........ & | 2 0 0 0 | 24 * * * * * * * * * | 2 0 1 0 0 0 0 0 0 0 0 | 1 2 0 0 0 0 ........ x....... ........ & | 2 0 0 0 | * 48 * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 | 1 1 1 0 0 0 oo......3oo......4oo......&#x & | 1 1 0 0 | * * 48 * * * * * * * | 0 0 1 2 0 0 0 0 0 0 0 | 0 2 1 0 0 0 ........ .x...... ........ & | 0 2 0 0 | * * * 48 * * * * * * | 0 0 0 1 1 1 0 0 0 0 0 | 0 1 1 1 0 0 .oo.....3.oo.....4.oo.....&#x & | 0 1 1 0 | * * * * 48 * * * * * | 0 0 1 0 0 2 0 0 0 0 0 | 0 2 0 1 0 0 ..x..... ........ ........ & | 0 0 2 0 | * * * * * 24 * * * * | 0 0 1 0 0 0 2 0 0 0 0 | 0 2 0 0 1 0 ..oo....3..oo....4..oo....&#x & | 0 0 1 1 | * * * * * * 96 * * * | 0 0 0 0 0 1 1 1 0 0 0 | 0 1 0 1 1 0 ...x.... ........ ........ & | 0 0 0 2 | * * * * * * * 48 * * | 0 0 0 0 0 0 1 0 1 1 0 | 0 1 0 0 1 1 ........ ...x.... ........ & | 0 0 0 2 | * * * * * * * * 48 * | 0 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 0 1 ...oo...3...oo...4...oo...&#x | 0 0 0 2 | * * * * * * * * * 48 | 0 0 0 0 0 0 0 1 0 1 1 | 0 0 0 1 1 1 ---------------------------------+-------------+-------------------------------+----------------------------------+--------------- x.......3x....... ........ & | 6 0 0 0 | 3 3 0 0 0 0 0 0 0 0 | 16 * * * * * * * * * * | 1 1 0 0 0 0 ........ x.......4o....... & | 4 0 0 0 | 0 4 0 0 0 0 0 0 0 0 | * 12 * * * * * * * * * | 1 0 1 0 0 0 xux..... ........ ........&#xt & | 2 2 2 0 | 1 0 2 0 2 1 0 0 0 0 | * * 24 * * * * * * * * | 0 2 0 0 0 0 ........ xx...... ........&#x & | 2 2 0 0 | 0 1 2 1 0 0 0 0 0 0 | * * * 48 * * * * * * * | 0 1 1 0 0 0 ........ .x......4.o...... & | 0 4 0 0 | 0 0 0 4 0 0 0 0 0 0 | * * * * 12 * * * * * * | 0 0 1 1 0 0 ........ .xux.... ........&#xt & | 0 2 2 2 | 0 0 0 1 2 0 2 0 1 0 | * * * * * 48 * * * * * | 0 1 0 1 0 0 ..xx.... ........ ........&#x & | 0 0 2 2 | 0 0 0 0 0 1 2 1 0 0 | * * * * * * 48 * * * * | 0 1 0 0 1 0 ........ ........ ..oqqo..&#xt | 0 0 2 4 | 0 0 0 0 0 0 4 0 0 2 | * * * * * * * 24 * * * | 0 0 0 1 1 0 {(h,H,H)2} ...x....3...x.... ........ & | 0 0 0 6 | 0 0 0 0 0 0 0 3 3 0 | * * * * * * * * 16 * * | 0 1 0 0 0 1 ...xx... ........ ........&#x | 0 0 0 4 | 0 0 0 0 0 0 0 2 0 2 | * * * * * * * * * 24 * | 0 0 0 0 1 1 ........ ...xx... ........&#x | 0 0 0 4 | 0 0 0 0 0 0 0 0 2 2 | * * * * * * * * * * 24 | 0 0 0 1 0 1 ---------------------------------+-------------+-------------------------------+----------------------------------+--------------- x.......3x.......4o....... & ♦ 24 0 0 0 | 12 24 0 0 0 0 0 0 0 0 | 8 6 0 0 0 0 0 0 0 0 0 | 2 * * * * * xuxx....3xxux.... ........&#xt & ♦ 6 6 6 6 | 3 3 6 3 6 3 6 3 3 0 | 1 0 3 3 0 3 3 0 1 0 0 | * 16 * * * * ........ xx......4oo......&#x & ♦ 4 4 0 0 | 0 4 4 4 0 0 0 0 0 0 | 0 1 0 4 1 0 0 0 0 0 0 | * * 12 * * * ........ .xuxxux.4.ooqqoo.&#xt ♦ 0 8 8 16 | 0 0 0 8 8 0 16 0 8 8 | 0 0 0 0 2 8 0 4 0 0 4 | * * * 6 * * ..xxxx.. ........ ..oqqo..&#xt ♦ 0 0 4 8 | 0 0 0 0 0 2 8 4 0 4 | 0 0 0 0 0 0 4 2 0 2 0 | * * * * 12 * ...xx...3...xx... ........&#x ♦ 0 0 0 12 | 0 0 0 0 0 0 0 6 6 6 | 0 0 0 0 0 0 0 0 2 3 3 | * * * * * 8
xuxx3xxux4oooq AXwx&#zxt → heights = 0, A=X+q=w+Q = 5.242641 (tegum sum of (x,x,A)-tope, (u,x,X)-tope, (x,u,w)-tope, and (x,x,q,x)-gircope) o...3o...4o... o... | 48 * * * | 1 2 1 0 0 0 0 0 0 0 | 2 1 1 2 0 0 0 0 0 0 0 | 1 2 1 0 0 0 .o..3.o..4.o.. .o.. | * 48 * * | 0 0 1 2 1 0 0 0 0 0 | 0 0 1 2 1 2 0 0 0 0 0 | 0 2 1 1 0 0 ..o.3..o.4..o. ..o. | * * 48 * | 0 0 0 0 1 1 2 0 0 0 | 0 0 1 0 0 2 2 1 0 0 0 | 0 2 0 1 1 0 ...o3...o4...o ...o | * * * 96 | 0 0 0 0 0 0 1 1 1 1 | 0 0 0 0 0 1 1 1 1 1 1 | 0 1 0 1 1 1 -------------------------+-------------+-------------------------------+----------------------------------+--------------- x... .... .... .... | 2 0 0 0 | 24 * * * * * * * * * | 2 0 1 0 0 0 0 0 0 0 0 | 1 2 0 0 0 0 .... x... .... .... | 2 0 0 0 | * 48 * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 | 1 1 1 0 0 0 oo..3oo..4oo.. oo..&#x | 1 1 0 0 | * * 48 * * * * * * * | 0 0 1 2 0 0 0 0 0 0 0 | 0 2 1 0 0 0 .... .x.. .... .... | 0 2 0 0 | * * * 48 * * * * * * | 0 0 0 1 1 1 0 0 0 0 0 | 0 1 1 1 0 0 .oo.3.oo.4.oo. .oo.&#x | 0 1 1 0 | * * * * 48 * * * * * | 0 0 1 0 0 2 0 0 0 0 0 | 0 2 0 1 0 0 ..x. .... .... .... | 0 0 2 0 | * * * * * 24 * * * * | 0 0 1 0 0 0 2 0 0 0 0 | 0 2 0 0 1 0 ..oo3..oo4..oo ..oo&#x | 0 0 1 1 | * * * * * * 96 * * * | 0 0 0 0 0 1 1 1 0 0 0 | 0 1 0 1 1 0 ...x .... .... .... | 0 0 0 2 | * * * * * * * 48 * * | 0 0 0 0 0 0 1 0 1 1 0 | 0 1 0 0 1 1 .... ...x .... .... | 0 0 0 2 | * * * * * * * * 48 * | 0 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 0 1 .... .... .... ...x | 0 0 0 2 | * * * * * * * * * 48 | 0 0 0 0 0 0 0 1 0 1 1 | 0 0 0 1 1 1 -------------------------+-------------+-------------------------------+----------------------------------+--------------- x...3x... .... .... | 6 0 0 0 | 3 3 0 0 0 0 0 0 0 0 | 16 * * * * * * * * * * | 1 1 0 0 0 0 .... x...4o... .... | 4 0 0 0 | 0 4 0 0 0 0 0 0 0 0 | * 12 * * * * * * * * * | 1 0 1 0 0 0 xux. .... .... ....&#xt | 2 2 2 0 | 1 0 2 0 2 1 0 0 0 0 | * * 24 * * * * * * * * | 0 2 0 0 0 0 .... xx.. .... ....&#x | 2 2 0 0 | 0 1 2 1 0 0 0 0 0 0 | * * * 48 * * * * * * * | 0 1 1 0 0 0 .... .x..4.o.. .... | 0 4 0 0 | 0 0 0 4 0 0 0 0 0 0 | * * * * 12 * * * * * * | 0 0 1 1 0 0 .... .xux .... ....&#xt | 0 2 2 2 | 0 0 0 1 2 0 2 0 1 0 | * * * * * 48 * * * * * | 0 1 0 1 0 0 ..xx .... .... ....&#x | 0 0 2 2 | 0 0 0 0 0 1 2 1 0 0 | * * * * * * 48 * * * * | 0 1 0 0 1 0 .... .... ..oq ..wx&#zx | 0 0 2 4 | 0 0 0 0 0 0 4 0 0 2 | * * * * * * * 24 * * * | 0 0 0 1 1 0 {(h,H,H)2} ...x3...x .... .... | 0 0 0 6 | 0 0 0 0 0 0 0 3 3 0 | * * * * * * * * 16 * * | 0 1 0 0 0 1 ...x .... .... ...x | 0 0 0 4 | 0 0 0 0 0 0 0 2 0 2 | * * * * * * * * * 24 * | 0 0 0 0 1 1 .... ...x .... ...x | 0 0 0 4 | 0 0 0 0 0 0 0 0 2 2 | * * * * * * * * * * 24 | 0 0 0 1 0 1 -------------------------+-------------+-------------------------------+----------------------------------+--------------- x...3x...4o... .... ♦ 24 0 0 0 | 12 24 0 0 0 0 0 0 0 0 | 8 6 0 0 0 0 0 0 0 0 0 | 2 * * * * * xuxx3xxux .... ....&#xt ♦ 6 6 6 6 | 3 3 6 3 6 3 6 3 3 0 | 1 0 3 3 0 3 3 0 1 0 0 | * 16 * * * * .... xx..4oo.. ....&#x ♦ 4 4 0 0 | 0 4 4 4 0 0 0 0 0 0 | 0 1 0 4 1 0 0 0 0 0 0 | * * 12 * * * .... .xux4.ooq .Xwx&#zxt ♦ 0 8 8 16 | 0 0 0 8 8 0 16 0 8 8 | 0 0 0 0 2 8 0 4 0 0 4 | * * * 6 * * ..xx .... ..oq ..wx&#zx ♦ 0 0 4 8 | 0 0 0 0 0 2 8 4 0 4 | 0 0 0 0 0 0 4 2 0 2 0 | * * * * 12 * ...x3...x .... ...x ♦ 0 0 0 12 | 0 0 0 0 0 0 0 6 6 6 | 0 0 0 0 0 0 0 0 2 3 3 | * * * * * 8
© 2004-2025 | top of page |