| Acronym | pextico |
| Name | partially (mono-)expanded tico |
|
Lace city in approx. ASCII-art |
x4o u4o x4q x4q u4o x4o
x4o D4o u4q u4q D4o x4o
u4o D4o x4Q x4Q D4o u4o
D = 3x
x4q u4q x4Q x4Q u4q x4q Q = 2q
u4o D4o x4Q x4Q D4o u4o
x4o D4o u4q u4q D4o x4o
x4o u4o x4q x4q u4o x4o
|
| Face vector | 240, 480, 296, 56 |
| Confer |
|
The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.
Incidence matrix according to Dynkin symbol
xuxxxxux3xxuxxuxx4oooqqooo&#xt → all but central heights = 1/sqrt(2) = 0.707107
central height = 1
(toe || (u,x)-toe || (x,u)-toe || (x,x,q)-girco || (x,x,q)-girco || (x,u)-toe || (u,x)-toe || toe)
o.......3o.......4o....... & | 48 * * * | 1 2 1 0 0 0 0 0 0 0 | 2 1 1 2 0 0 0 0 0 0 0 | 1 2 1 0 0 0
.o......3.o......4.o...... & | * 48 * * | 0 0 1 2 1 0 0 0 0 0 | 0 0 1 2 1 2 0 0 0 0 0 | 0 2 1 1 0 0
..o.....3..o.....4..o..... & | * * 48 * | 0 0 0 0 1 1 2 0 0 0 | 0 0 1 0 0 2 2 1 0 0 0 | 0 2 0 1 1 0
...o....3...o....4...o.... & | * * * 96 | 0 0 0 0 0 0 1 1 1 1 | 0 0 0 0 0 1 1 1 1 1 1 | 0 1 0 1 1 1
---------------------------------+-------------+-------------------------------+----------------------------------+---------------
x....... ........ ........ & | 2 0 0 0 | 24 * * * * * * * * * | 2 0 1 0 0 0 0 0 0 0 0 | 1 2 0 0 0 0
........ x....... ........ & | 2 0 0 0 | * 48 * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 | 1 1 1 0 0 0
oo......3oo......4oo......&#x & | 1 1 0 0 | * * 48 * * * * * * * | 0 0 1 2 0 0 0 0 0 0 0 | 0 2 1 0 0 0
........ .x...... ........ & | 0 2 0 0 | * * * 48 * * * * * * | 0 0 0 1 1 1 0 0 0 0 0 | 0 1 1 1 0 0
.oo.....3.oo.....4.oo.....&#x & | 0 1 1 0 | * * * * 48 * * * * * | 0 0 1 0 0 2 0 0 0 0 0 | 0 2 0 1 0 0
..x..... ........ ........ & | 0 0 2 0 | * * * * * 24 * * * * | 0 0 1 0 0 0 2 0 0 0 0 | 0 2 0 0 1 0
..oo....3..oo....4..oo....&#x & | 0 0 1 1 | * * * * * * 96 * * * | 0 0 0 0 0 1 1 1 0 0 0 | 0 1 0 1 1 0
...x.... ........ ........ & | 0 0 0 2 | * * * * * * * 48 * * | 0 0 0 0 0 0 1 0 1 1 0 | 0 1 0 0 1 1
........ ...x.... ........ & | 0 0 0 2 | * * * * * * * * 48 * | 0 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 0 1
...oo...3...oo...4...oo...&#x | 0 0 0 2 | * * * * * * * * * 48 | 0 0 0 0 0 0 0 1 0 1 1 | 0 0 0 1 1 1
---------------------------------+-------------+-------------------------------+----------------------------------+---------------
x.......3x....... ........ & | 6 0 0 0 | 3 3 0 0 0 0 0 0 0 0 | 16 * * * * * * * * * * | 1 1 0 0 0 0
........ x.......4o....... & | 4 0 0 0 | 0 4 0 0 0 0 0 0 0 0 | * 12 * * * * * * * * * | 1 0 1 0 0 0
xux..... ........ ........&#xt & | 2 2 2 0 | 1 0 2 0 2 1 0 0 0 0 | * * 24 * * * * * * * * | 0 2 0 0 0 0
........ xx...... ........&#x & | 2 2 0 0 | 0 1 2 1 0 0 0 0 0 0 | * * * 48 * * * * * * * | 0 1 1 0 0 0
........ .x......4.o...... & | 0 4 0 0 | 0 0 0 4 0 0 0 0 0 0 | * * * * 12 * * * * * * | 0 0 1 1 0 0
........ .xux.... ........&#xt & | 0 2 2 2 | 0 0 0 1 2 0 2 0 1 0 | * * * * * 48 * * * * * | 0 1 0 1 0 0
..xx.... ........ ........&#x & | 0 0 2 2 | 0 0 0 0 0 1 2 1 0 0 | * * * * * * 48 * * * * | 0 1 0 0 1 0
........ ........ ..oqqo..&#xt | 0 0 2 4 | 0 0 0 0 0 0 4 0 0 2 | * * * * * * * 24 * * * | 0 0 0 1 1 0 {(h,H,H)2}
...x....3...x.... ........ & | 0 0 0 6 | 0 0 0 0 0 0 0 3 3 0 | * * * * * * * * 16 * * | 0 1 0 0 0 1
...xx... ........ ........&#x | 0 0 0 4 | 0 0 0 0 0 0 0 2 0 2 | * * * * * * * * * 24 * | 0 0 0 0 1 1
........ ...xx... ........&#x | 0 0 0 4 | 0 0 0 0 0 0 0 0 2 2 | * * * * * * * * * * 24 | 0 0 0 1 0 1
---------------------------------+-------------+-------------------------------+----------------------------------+---------------
x.......3x.......4o....... & ♦ 24 0 0 0 | 12 24 0 0 0 0 0 0 0 0 | 8 6 0 0 0 0 0 0 0 0 0 | 2 * * * * *
xuxx....3xxux.... ........&#xt & ♦ 6 6 6 6 | 3 3 6 3 6 3 6 3 3 0 | 1 0 3 3 0 3 3 0 1 0 0 | * 16 * * * *
........ xx......4oo......&#x & ♦ 4 4 0 0 | 0 4 4 4 0 0 0 0 0 0 | 0 1 0 4 1 0 0 0 0 0 0 | * * 12 * * *
........ .xuxxux.4.ooqqoo.&#xt ♦ 0 8 8 16 | 0 0 0 8 8 0 16 0 8 8 | 0 0 0 0 2 8 0 4 0 0 4 | * * * 6 * *
..xxxx.. ........ ..oqqo..&#xt ♦ 0 0 4 8 | 0 0 0 0 0 2 8 4 0 4 | 0 0 0 0 0 0 4 2 0 2 0 | * * * * 12 *
...xx...3...xx... ........&#x ♦ 0 0 0 12 | 0 0 0 0 0 0 0 6 6 6 | 0 0 0 0 0 0 0 0 2 3 3 | * * * * * 8
xuxx3xxux4oooq AXwx&#zxt → heights = 0, A=X+q=w+Q = 5.242641
(tegum sum of (x,x,A)-tope, (u,x,X)-tope, (x,u,w)-tope, and (x,x,q,x)-gircope)
o...3o...4o... o... | 48 * * * | 1 2 1 0 0 0 0 0 0 0 | 2 1 1 2 0 0 0 0 0 0 0 | 1 2 1 0 0 0
.o..3.o..4.o.. .o.. | * 48 * * | 0 0 1 2 1 0 0 0 0 0 | 0 0 1 2 1 2 0 0 0 0 0 | 0 2 1 1 0 0
..o.3..o.4..o. ..o. | * * 48 * | 0 0 0 0 1 1 2 0 0 0 | 0 0 1 0 0 2 2 1 0 0 0 | 0 2 0 1 1 0
...o3...o4...o ...o | * * * 96 | 0 0 0 0 0 0 1 1 1 1 | 0 0 0 0 0 1 1 1 1 1 1 | 0 1 0 1 1 1
-------------------------+-------------+-------------------------------+----------------------------------+---------------
x... .... .... .... | 2 0 0 0 | 24 * * * * * * * * * | 2 0 1 0 0 0 0 0 0 0 0 | 1 2 0 0 0 0
.... x... .... .... | 2 0 0 0 | * 48 * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 | 1 1 1 0 0 0
oo..3oo..4oo.. oo..&#x | 1 1 0 0 | * * 48 * * * * * * * | 0 0 1 2 0 0 0 0 0 0 0 | 0 2 1 0 0 0
.... .x.. .... .... | 0 2 0 0 | * * * 48 * * * * * * | 0 0 0 1 1 1 0 0 0 0 0 | 0 1 1 1 0 0
.oo.3.oo.4.oo. .oo.&#x | 0 1 1 0 | * * * * 48 * * * * * | 0 0 1 0 0 2 0 0 0 0 0 | 0 2 0 1 0 0
..x. .... .... .... | 0 0 2 0 | * * * * * 24 * * * * | 0 0 1 0 0 0 2 0 0 0 0 | 0 2 0 0 1 0
..oo3..oo4..oo ..oo&#x | 0 0 1 1 | * * * * * * 96 * * * | 0 0 0 0 0 1 1 1 0 0 0 | 0 1 0 1 1 0
...x .... .... .... | 0 0 0 2 | * * * * * * * 48 * * | 0 0 0 0 0 0 1 0 1 1 0 | 0 1 0 0 1 1
.... ...x .... .... | 0 0 0 2 | * * * * * * * * 48 * | 0 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 0 1
.... .... .... ...x | 0 0 0 2 | * * * * * * * * * 48 | 0 0 0 0 0 0 0 1 0 1 1 | 0 0 0 1 1 1
-------------------------+-------------+-------------------------------+----------------------------------+---------------
x...3x... .... .... | 6 0 0 0 | 3 3 0 0 0 0 0 0 0 0 | 16 * * * * * * * * * * | 1 1 0 0 0 0
.... x...4o... .... | 4 0 0 0 | 0 4 0 0 0 0 0 0 0 0 | * 12 * * * * * * * * * | 1 0 1 0 0 0
xux. .... .... ....&#xt | 2 2 2 0 | 1 0 2 0 2 1 0 0 0 0 | * * 24 * * * * * * * * | 0 2 0 0 0 0
.... xx.. .... ....&#x | 2 2 0 0 | 0 1 2 1 0 0 0 0 0 0 | * * * 48 * * * * * * * | 0 1 1 0 0 0
.... .x..4.o.. .... | 0 4 0 0 | 0 0 0 4 0 0 0 0 0 0 | * * * * 12 * * * * * * | 0 0 1 1 0 0
.... .xux .... ....&#xt | 0 2 2 2 | 0 0 0 1 2 0 2 0 1 0 | * * * * * 48 * * * * * | 0 1 0 1 0 0
..xx .... .... ....&#x | 0 0 2 2 | 0 0 0 0 0 1 2 1 0 0 | * * * * * * 48 * * * * | 0 1 0 0 1 0
.... .... ..oq ..wx&#zx | 0 0 2 4 | 0 0 0 0 0 0 4 0 0 2 | * * * * * * * 24 * * * | 0 0 0 1 1 0 {(h,H,H)2}
...x3...x .... .... | 0 0 0 6 | 0 0 0 0 0 0 0 3 3 0 | * * * * * * * * 16 * * | 0 1 0 0 0 1
...x .... .... ...x | 0 0 0 4 | 0 0 0 0 0 0 0 2 0 2 | * * * * * * * * * 24 * | 0 0 0 0 1 1
.... ...x .... ...x | 0 0 0 4 | 0 0 0 0 0 0 0 0 2 2 | * * * * * * * * * * 24 | 0 0 0 1 0 1
-------------------------+-------------+-------------------------------+----------------------------------+---------------
x...3x...4o... .... ♦ 24 0 0 0 | 12 24 0 0 0 0 0 0 0 0 | 8 6 0 0 0 0 0 0 0 0 0 | 2 * * * * *
xuxx3xxux .... ....&#xt ♦ 6 6 6 6 | 3 3 6 3 6 3 6 3 3 0 | 1 0 3 3 0 3 3 0 1 0 0 | * 16 * * * *
.... xx..4oo.. ....&#x ♦ 4 4 0 0 | 0 4 4 4 0 0 0 0 0 0 | 0 1 0 4 1 0 0 0 0 0 0 | * * 12 * * *
.... .xux4.ooq .Xwx&#zxt ♦ 0 8 8 16 | 0 0 0 8 8 0 16 0 8 8 | 0 0 0 0 2 8 0 4 0 0 4 | * * * 6 * *
..xx .... ..oq ..wx&#zx ♦ 0 0 4 8 | 0 0 0 0 0 2 8 4 0 4 | 0 0 0 0 0 0 4 2 0 2 0 | * * * * 12 *
...x3...x .... ...x ♦ 0 0 0 12 | 0 0 0 0 0 0 0 6 6 6 | 0 0 0 0 0 0 0 0 2 3 3 | * * * * * 8
© 2004-2025 | top of page |