Acronym pextico
Name partially (mono-)expanded tico
Lace city
in approx. ASCII-art
    x4o u4o x4q   x4q u4o x4o    
                                 
x4o     D4o u4q   u4q D4o     x4o
                                 
u4o D4o     x4Q   x4Q     D4o u4o
                                 		D = 3x
x4q u4q x4Q           x4Q u4q x4q		Q = 2q
                                 
u4o D4o     x4Q   x4Q     D4o u4o
                                 
x4o     D4o u4q   u4q D4o     x4o
                                 
    x4o u4o x4q   x4q u4o x4o    
Face vector 240, 480, 296, 56
Confer
uniform relative:
tico  
related CnRFs:
pabextico   pac gidpith  
general polytopal classes:
partial Stott expansions  

The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.


Incidence matrix according to Dynkin symbol

xuxxxxux3xxuxxuxx4oooqqooo&#xt   → all but central heights = 1/sqrt(2) = 0.707107
                                   central height = 1
(toe || (u,x)-toe || (x,u)-toe || (x,x,q)-girco || (x,x,q)-girco || (x,u)-toe || (u,x)-toe || toe)

o.......3o.......4o.......     & | 48  *  *  * |  1  2  1  0  0  0  0  0  0  0 |  2  1  1  2  0  0  0  0  0  0  0 | 1  2  1 0  0 0
.o......3.o......4.o......     & |  * 48  *  * |  0  0  1  2  1  0  0  0  0  0 |  0  0  1  2  1  2  0  0  0  0  0 | 0  2  1 1  0 0
..o.....3..o.....4..o.....     & |  *  * 48  * |  0  0  0  0  1  1  2  0  0  0 |  0  0  1  0  0  2  2  1  0  0  0 | 0  2  0 1  1 0
...o....3...o....4...o....     & |  *  *  * 96 |  0  0  0  0  0  0  1  1  1  1 |  0  0  0  0  0  1  1  1  1  1  1 | 0  1  0 1  1 1
---------------------------------+-------------+-------------------------------+----------------------------------+---------------
x....... ........ ........     & |  2  0  0  0 | 24  *  *  *  *  *  *  *  *  * |  2  0  1  0  0  0  0  0  0  0  0 | 1  2  0 0  0 0
........ x....... ........     & |  2  0  0  0 |  * 48  *  *  *  *  *  *  *  * |  1  1  0  1  0  0  0  0  0  0  0 | 1  1  1 0  0 0
oo......3oo......4oo......&#x  & |  1  1  0  0 |  *  * 48  *  *  *  *  *  *  * |  0  0  1  2  0  0  0  0  0  0  0 | 0  2  1 0  0 0
........ .x...... ........     & |  0  2  0  0 |  *  *  * 48  *  *  *  *  *  * |  0  0  0  1  1  1  0  0  0  0  0 | 0  1  1 1  0 0
.oo.....3.oo.....4.oo.....&#x  & |  0  1  1  0 |  *  *  *  * 48  *  *  *  *  * |  0  0  1  0  0  2  0  0  0  0  0 | 0  2  0 1  0 0
..x..... ........ ........     & |  0  0  2  0 |  *  *  *  *  * 24  *  *  *  * |  0  0  1  0  0  0  2  0  0  0  0 | 0  2  0 0  1 0
..oo....3..oo....4..oo....&#x  & |  0  0  1  1 |  *  *  *  *  *  * 96  *  *  * |  0  0  0  0  0  1  1  1  0  0  0 | 0  1  0 1  1 0
...x.... ........ ........     & |  0  0  0  2 |  *  *  *  *  *  *  * 48  *  * |  0  0  0  0  0  0  1  0  1  1  0 | 0  1  0 0  1 1
........ ...x.... ........     & |  0  0  0  2 |  *  *  *  *  *  *  *  * 48  * |  0  0  0  0  0  1  0  0  1  0  1 | 0  1  0 1  0 1
...oo...3...oo...4...oo...&#x    |  0  0  0  2 |  *  *  *  *  *  *  *  *  * 48 |  0  0  0  0  0  0  0  1  0  1  1 | 0  0  0 1  1 1
---------------------------------+-------------+-------------------------------+----------------------------------+---------------
x.......3x....... ........     & |  6  0  0  0 |  3  3  0  0  0  0  0  0  0  0 | 16  *  *  *  *  *  *  *  *  *  * | 1  1  0 0  0 0
........ x.......4o.......     & |  4  0  0  0 |  0  4  0  0  0  0  0  0  0  0 |  * 12  *  *  *  *  *  *  *  *  * | 1  0  1 0  0 0
xux..... ........ ........&#xt & |  2  2  2  0 |  1  0  2  0  2  1  0  0  0  0 |  *  * 24  *  *  *  *  *  *  *  * | 0  2  0 0  0 0
........ xx...... ........&#x  & |  2  2  0  0 |  0  1  2  1  0  0  0  0  0  0 |  *  *  * 48  *  *  *  *  *  *  * | 0  1  1 0  0 0
........ .x......4.o......     & |  0  4  0  0 |  0  0  0  4  0  0  0  0  0  0 |  *  *  *  * 12  *  *  *  *  *  * | 0  0  1 1  0 0
........ .xux.... ........&#xt & |  0  2  2  2 |  0  0  0  1  2  0  2  0  1  0 |  *  *  *  *  * 48  *  *  *  *  * | 0  1  0 1  0 0
..xx.... ........ ........&#x  & |  0  0  2  2 |  0  0  0  0  0  1  2  1  0  0 |  *  *  *  *  *  * 48  *  *  *  * | 0  1  0 0  1 0
........ ........ ..oqqo..&#xt   |  0  0  2  4 |  0  0  0  0  0  0  4  0  0  2 |  *  *  *  *  *  *  * 24  *  *  * | 0  0  0 1  1 0  {(h,H,H)2}
...x....3...x.... ........     & |  0  0  0  6 |  0  0  0  0  0  0  0  3  3  0 |  *  *  *  *  *  *  *  * 16  *  * | 0  1  0 0  0 1
...xx... ........ ........&#x    |  0  0  0  4 |  0  0  0  0  0  0  0  2  0  2 |  *  *  *  *  *  *  *  *  * 24  * | 0  0  0 0  1 1
........ ...xx... ........&#x    |  0  0  0  4 |  0  0  0  0  0  0  0  0  2  2 |  *  *  *  *  *  *  *  *  *  * 24 | 0  0  0 1  0 1
---------------------------------+-------------+-------------------------------+----------------------------------+---------------
x.......3x.......4o.......     &  24  0  0  0 | 12 24  0  0  0  0  0  0  0  0 |  8  6  0  0  0  0  0  0  0  0  0 | 2  *  * *  * *
xuxx....3xxux.... ........&#xt &   6  6  6  6 |  3  3  6  3  6  3  6  3  3  0 |  1  0  3  3  0  3  3  0  1  0  0 | * 16  * *  * *
........ xx......4oo......&#x  &   4  4  0  0 |  0  4  4  4  0  0  0  0  0  0 |  0  1  0  4  1  0  0  0  0  0  0 | *  * 12 *  * *
........ .xuxxux.4.ooqqoo.&#xt     0  8  8 16 |  0  0  0  8  8  0 16  0  8  8 |  0  0  0  0  2  8  0  4  0  0  4 | *  *  * 6  * *
..xxxx.. ........ ..oqqo..&#xt     0  0  4  8 |  0  0  0  0  0  2  8  4  0  4 |  0  0  0  0  0  0  4  2  0  2  0 | *  *  * * 12 *
...xx...3...xx... ........&#x      0  0  0 12 |  0  0  0  0  0  0  0  6  6  6 |  0  0  0  0  0  0  0  0  2  3  3 | *  *  * *  * 8

xuxx3xxux4oooq AXwx&#zxt   → heights = 0, A=X+q=w+Q = 5.242641
(tegum sum of (x,x,A)-tope, (u,x,X)-tope, (x,u,w)-tope, and (x,x,q,x)-gircope)

o...3o...4o... o...      | 48  *  *  * |  1  2  1  0  0  0  0  0  0  0 |  2  1  1  2  0  0  0  0  0  0  0 | 1  2  1 0  0 0
.o..3.o..4.o.. .o..      |  * 48  *  * |  0  0  1  2  1  0  0  0  0  0 |  0  0  1  2  1  2  0  0  0  0  0 | 0  2  1 1  0 0
..o.3..o.4..o. ..o.      |  *  * 48  * |  0  0  0  0  1  1  2  0  0  0 |  0  0  1  0  0  2  2  1  0  0  0 | 0  2  0 1  1 0
...o3...o4...o ...o      |  *  *  * 96 |  0  0  0  0  0  0  1  1  1  1 |  0  0  0  0  0  1  1  1  1  1  1 | 0  1  0 1  1 1
-------------------------+-------------+-------------------------------+----------------------------------+---------------
x... .... .... ....      |  2  0  0  0 | 24  *  *  *  *  *  *  *  *  * |  2  0  1  0  0  0  0  0  0  0  0 | 1  2  0 0  0 0
.... x... .... ....      |  2  0  0  0 |  * 48  *  *  *  *  *  *  *  * |  1  1  0  1  0  0  0  0  0  0  0 | 1  1  1 0  0 0
oo..3oo..4oo.. oo..&#x   |  1  1  0  0 |  *  * 48  *  *  *  *  *  *  * |  0  0  1  2  0  0  0  0  0  0  0 | 0  2  1 0  0 0
.... .x.. .... ....      |  0  2  0  0 |  *  *  * 48  *  *  *  *  *  * |  0  0  0  1  1  1  0  0  0  0  0 | 0  1  1 1  0 0
.oo.3.oo.4.oo. .oo.&#x   |  0  1  1  0 |  *  *  *  * 48  *  *  *  *  * |  0  0  1  0  0  2  0  0  0  0  0 | 0  2  0 1  0 0
..x. .... .... ....      |  0  0  2  0 |  *  *  *  *  * 24  *  *  *  * |  0  0  1  0  0  0  2  0  0  0  0 | 0  2  0 0  1 0
..oo3..oo4..oo ..oo&#x   |  0  0  1  1 |  *  *  *  *  *  * 96  *  *  * |  0  0  0  0  0  1  1  1  0  0  0 | 0  1  0 1  1 0
...x .... .... ....      |  0  0  0  2 |  *  *  *  *  *  *  * 48  *  * |  0  0  0  0  0  0  1  0  1  1  0 | 0  1  0 0  1 1
.... ...x .... ....      |  0  0  0  2 |  *  *  *  *  *  *  *  * 48  * |  0  0  0  0  0  1  0  0  1  0  1 | 0  1  0 1  0 1
.... .... .... ...x      |  0  0  0  2 |  *  *  *  *  *  *  *  *  * 48 |  0  0  0  0  0  0  0  1  0  1  1 | 0  0  0 1  1 1
-------------------------+-------------+-------------------------------+----------------------------------+---------------
x...3x... .... ....      |  6  0  0  0 |  3  3  0  0  0  0  0  0  0  0 | 16  *  *  *  *  *  *  *  *  *  * | 1  1  0 0  0 0
.... x...4o... ....      |  4  0  0  0 |  0  4  0  0  0  0  0  0  0  0 |  * 12  *  *  *  *  *  *  *  *  * | 1  0  1 0  0 0
xux. .... .... ....&#xt  |  2  2  2  0 |  1  0  2  0  2  1  0  0  0  0 |  *  * 24  *  *  *  *  *  *  *  * | 0  2  0 0  0 0
.... xx.. .... ....&#x   |  2  2  0  0 |  0  1  2  1  0  0  0  0  0  0 |  *  *  * 48  *  *  *  *  *  *  * | 0  1  1 0  0 0
.... .x..4.o.. ....      |  0  4  0  0 |  0  0  0  4  0  0  0  0  0  0 |  *  *  *  * 12  *  *  *  *  *  * | 0  0  1 1  0 0
.... .xux .... ....&#xt  |  0  2  2  2 |  0  0  0  1  2  0  2  0  1  0 |  *  *  *  *  * 48  *  *  *  *  * | 0  1  0 1  0 0
..xx .... .... ....&#x   |  0  0  2  2 |  0  0  0  0  0  1  2  1  0  0 |  *  *  *  *  *  * 48  *  *  *  * | 0  1  0 0  1 0
.... .... ..oq ..wx&#zx  |  0  0  2  4 |  0  0  0  0  0  0  4  0  0  2 |  *  *  *  *  *  *  * 24  *  *  * | 0  0  0 1  1 0  {(h,H,H)2}
...x3...x .... ....      |  0  0  0  6 |  0  0  0  0  0  0  0  3  3  0 |  *  *  *  *  *  *  *  * 16  *  * | 0  1  0 0  0 1
...x .... .... ...x      |  0  0  0  4 |  0  0  0  0  0  0  0  2  0  2 |  *  *  *  *  *  *  *  *  * 24  * | 0  0  0 0  1 1
.... ...x .... ...x      |  0  0  0  4 |  0  0  0  0  0  0  0  0  2  2 |  *  *  *  *  *  *  *  *  *  * 24 | 0  0  0 1  0 1
-------------------------+-------------+-------------------------------+----------------------------------+---------------
x...3x...4o... ....       24  0  0  0 | 12 24  0  0  0  0  0  0  0  0 |  8  6  0  0  0  0  0  0  0  0  0 | 2  *  * *  * *
xuxx3xxux .... ....&#xt    6  6  6  6 |  3  3  6  3  6  3  6  3  3  0 |  1  0  3  3  0  3  3  0  1  0  0 | * 16  * *  * *
.... xx..4oo.. ....&#x     4  4  0  0 |  0  4  4  4  0  0  0  0  0  0 |  0  1  0  4  1  0  0  0  0  0  0 | *  * 12 *  * *
.... .xux4.ooq .Xwx&#zxt   0  8  8 16 |  0  0  0  8  8  0 16  0  8  8 |  0  0  0  0  2  8  0  4  0  0  4 | *  *  * 6  * *
..xx .... ..oq ..wx&#zx    0  0  4  8 |  0  0  0  0  0  2  8  4  0  4 |  0  0  0  0  0  0  4  2  0  2  0 | *  *  * * 12 *
...x3...x .... ...x        0  0  0 12 |  0  0  0  0  0  0  0  6  6  6 |  0  0  0  0  0  0  0  0  2  3  3 | *  *  * *  * 8

© 2004-2025
top of page