Acronym | pac gidpith |
Name | partially (mono-)contracted gidpith |
Lace city in approx. ASCII-art |
x4x u4x x4w x4w u4x x4x x4x D4x u4w u4w D4x x4x u4x D4x x4X x4X D4x u4x D=3x X=x+2q x4w u4w x4X x4X u4w x4w u4x D4x x4X x4X D4x u4x x4x D4x u4w u4w D4x x4x x4x u4x x4w x4w u4x x4x |
Face vector | 336, 672, 408, 72 |
Confer |
The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.
Incidence matrix according to Dynkin symbol
xuxxxux3xxuxuxx4xxxwxxx&#xt → all heights = 1/sqrt(2) = 0.707107 (girco || (u,x,x)-girco || (x,u,x)-girco || (x,x,w)-girco || (x,u,x)-girco || (u,x,x)-girco || girco) o......3o......4o...... & | 96 * * * | 1 1 1 1 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 0 0 0 | 1 1 1 1 0 0 .o.....3.o.....4.o..... & | * 96 * * | 0 0 0 1 1 1 1 0 0 0 0 0 | 0 0 0 1 1 1 1 1 1 0 0 0 0 | 0 1 1 1 1 0 ..o....3..o....4..o.... & | * * 96 * | 0 0 0 0 0 0 1 1 1 1 0 0 | 0 0 0 1 0 0 0 1 1 1 1 1 0 | 0 1 1 0 1 1 ...o...3...o...4...o... | * * * 48 | 0 0 0 0 0 0 0 0 0 2 1 1 | 0 0 0 0 0 0 0 2 0 0 2 1 1 | 0 2 0 0 1 1 ------------------------------+-------------+-------------------------------------+---------------------------------------+---------------- x...... ....... ....... & | 2 0 0 0 | 48 * * * * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 ....... x...... ....... & | 2 0 0 0 | * 48 * * * * * * * * * * | 1 0 1 0 1 0 0 0 0 0 0 0 0 | 1 1 0 1 0 0 ....... ....... x...... & | 2 0 0 0 | * * 48 * * * * * * * * * | 0 1 1 0 0 1 0 0 0 0 0 0 0 | 1 0 1 1 0 0 oo.....3oo.....4oo.....&#x & | 1 1 0 0 | * * * 96 * * * * * * * * | 0 0 0 1 1 1 0 0 0 0 0 0 0 | 0 1 1 1 0 0 ....... .x..... ....... & | 0 2 0 0 | * * * * 48 * * * * * * * | 0 0 0 0 1 0 1 1 0 0 0 0 0 | 0 1 0 1 1 0 ....... ....... .x..... & | 0 2 0 0 | * * * * * 48 * * * * * * | 0 0 0 0 0 1 1 0 1 0 0 0 0 | 0 0 1 1 1 0 .oo....3.oo....4.oo....&#x & | 0 1 1 0 | * * * * * * 96 * * * * * | 0 0 0 1 0 0 0 1 1 0 0 0 0 | 0 1 1 0 1 0 ..x.... ....... ....... & | 0 0 2 0 | * * * * * * * 48 * * * * | 0 0 0 1 0 0 0 0 0 1 1 0 0 | 0 1 1 0 0 1 ....... ....... ..x.... & | 0 0 2 0 | * * * * * * * * 48 * * * | 0 0 0 0 0 0 0 0 1 1 0 1 0 | 0 0 1 0 1 1 ..oo...3..oo...4..oo...&#x & | 0 0 1 1 | * * * * * * * * * 96 * * | 0 0 0 0 0 0 0 1 0 0 1 1 0 | 0 1 0 0 1 1 ...x... ....... ....... | 0 0 0 2 | * * * * * * * * * * 24 * | 0 0 0 0 0 0 0 0 0 0 2 0 1 | 0 2 0 0 0 1 ....... ...x... ....... | 0 0 0 2 | * * * * * * * * * * * 24 | 0 0 0 0 0 0 0 2 0 0 0 0 1 | 0 2 0 0 1 0 ------------------------------+-------------+-------------------------------------+---------------------------------------+---------------- x......3x...... ....... & | 6 0 0 0 | 3 3 0 0 0 0 0 0 0 0 0 0 | 16 * * * * * * * * * * * * | 1 1 0 0 0 0 x...... ....... x...... & | 4 0 0 0 | 2 0 2 0 0 0 0 0 0 0 0 0 | * 24 * * * * * * * * * * * | 1 0 1 0 0 0 ....... x......4x...... & | 8 0 0 0 | 0 4 4 0 0 0 0 0 0 0 0 0 | * * 12 * * * * * * * * * * | 1 0 0 1 0 0 xux.... ....... .......&#xt & | 2 2 2 0 | 1 0 0 2 0 0 2 1 0 0 0 0 | * * * 48 * * * * * * * * * | 0 1 1 0 0 0 ....... xx..... .......&#x & | 2 2 0 0 | 0 1 0 2 1 0 0 0 0 0 0 0 | * * * * 48 * * * * * * * * | 0 1 0 1 0 0 ....... ....... xx.....&#x & | 2 2 0 0 | 0 0 1 2 0 1 0 0 0 0 0 0 | * * * * * 48 * * * * * * * | 0 0 1 1 0 0 ....... .x.....4.x..... & | 0 8 0 0 | 0 0 0 0 4 4 0 0 0 0 0 0 | * * * * * * 12 * * * * * * | 0 0 0 1 1 0 ....... .xux... .......&#xt & | 0 2 2 2 | 0 0 0 0 1 0 2 0 0 2 0 1 | * * * * * * * 48 * * * * * | 0 1 0 0 1 0 ....... ....... .xx....&#x & | 0 2 2 0 | 0 0 0 0 0 1 2 0 1 0 0 0 | * * * * * * * * 48 * * * * | 0 0 1 0 1 0 ..x.... ....... ..x.... & | 0 0 4 0 | 0 0 0 0 0 0 0 2 2 0 0 0 | * * * * * * * * * 24 * * * | 0 0 1 0 0 1 ..xx... ....... .......&#x & | 0 0 2 2 | 0 0 0 0 0 0 0 1 0 2 1 0 | * * * * * * * * * * 48 * * | 0 1 0 0 0 1 ....... ....... ..xwx..&#xt | 0 0 4 2 | 0 0 0 0 0 0 0 0 2 4 0 0 | * * * * * * * * * * * 24 * | 0 0 0 0 1 1 {(h,H,H)2} ...x...3...x... ....... | 0 0 0 6 | 0 0 0 0 0 0 0 0 0 0 3 3 | * * * * * * * * * * * * 8 | 0 2 0 0 0 0 ------------------------------+-------------+-------------------------------------+---------------------------------------+---------------- x......3x......4x...... & ♦ 48 0 0 0 | 24 24 24 0 0 0 0 0 0 0 0 0 | 8 12 6 0 0 0 0 0 0 0 0 0 0 | 2 * * * * * xuxx...3xxux... .......&#xt & ♦ 6 6 6 6 | 3 3 0 6 3 0 6 3 0 6 3 3 | 1 0 0 3 3 0 0 3 0 0 3 0 1 | * 16 * * * * xux.... ....... xxx....&#xt & ♦ 4 4 4 0 | 2 0 2 4 0 2 4 2 2 0 0 0 | 0 1 0 2 0 2 0 0 2 1 0 0 0 | * * 24 * * * ....... xx.....4xx.....&#x & ♦ 8 8 0 0 | 0 4 4 8 4 4 0 0 0 0 0 0 | 0 0 1 0 4 4 1 0 0 0 0 0 0 | * * * 12 * * ....... .xuxux.4.xxwxx.&#xt ♦ 0 16 16 8 | 0 0 0 0 8 8 16 0 8 16 0 4 | 0 0 0 0 0 0 2 8 8 0 0 4 0 | * * * * 6 * ..xxx.. ....... ..xwx..&#xt ♦ 0 0 8 4 | 0 0 0 0 0 0 0 4 4 8 2 0 | 0 0 0 0 0 0 0 0 0 2 4 2 0 | * * * * * 12
xuxx3xxux4xxxw ZQqo&#xt → heights = 0, Z=3q = 4.242641 (tegum sum of (x,x,x,Z)-gircope, (u,x,x,Q)-gircope, (x,u,x,q)-gircope, and (x,x,w)-girco) o...3o...4o... o... | 96 * * * | 1 1 1 1 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 0 0 0 | 1 1 1 1 0 0 .o..3.o..4.o.. .o.. | * 96 * * | 0 0 0 1 1 1 1 0 0 0 0 0 | 0 0 0 1 1 1 1 1 1 0 0 0 0 | 0 1 1 1 1 0 ..o.3..o.4..o. ..o. | * * 96 * | 0 0 0 0 0 0 1 1 1 1 0 0 | 0 0 0 1 0 0 0 1 1 1 1 1 0 | 0 1 1 0 1 1 ...o3...o4...o ...o | * * * 48 | 0 0 0 0 0 0 0 0 0 2 1 1 | 0 0 0 0 0 0 0 2 0 0 2 1 1 | 0 2 0 0 1 1 -------------------------+-------------+-------------------------------------+---------------------------------------+---------------- x... .... .... .... | 2 0 0 0 | 48 * * * * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 .... x... .... .... | 2 0 0 0 | * 48 * * * * * * * * * * | 1 0 1 0 1 0 0 0 0 0 0 0 0 | 1 1 0 1 0 0 .... .... x... .... | 2 0 0 0 | * * 48 * * * * * * * * * | 0 1 1 0 0 1 0 0 0 0 0 0 0 | 1 0 1 1 0 0 oo..3oo..4oo.. oo..&#x | 1 1 0 0 | * * * 96 * * * * * * * * | 0 0 0 1 1 1 0 0 0 0 0 0 0 | 0 1 1 1 0 0 .... .x.. .... .... | 0 2 0 0 | * * * * 48 * * * * * * * | 0 0 0 0 1 0 1 1 0 0 0 0 0 | 0 1 0 1 1 0 .... .... .x.. .... | 0 2 0 0 | * * * * * 48 * * * * * * | 0 0 0 0 0 1 1 0 1 0 0 0 0 | 0 0 1 1 1 0 .oo.3.oo.4.oo. .oo.&#x | 0 1 1 0 | * * * * * * 96 * * * * * | 0 0 0 1 0 0 0 1 1 0 0 0 0 | 0 1 1 0 1 0 ..x. .... .... .... | 0 0 2 0 | * * * * * * * 48 * * * * | 0 0 0 1 0 0 0 0 0 1 1 0 0 | 0 1 1 0 0 1 .... .... ..x. .... | 0 0 2 0 | * * * * * * * * 48 * * * | 0 0 0 0 0 0 0 0 1 1 0 1 0 | 0 0 1 0 1 1 ..oo3..oo4..oo ..oo&#x | 0 0 1 1 | * * * * * * * * * 96 * * | 0 0 0 0 0 0 0 1 0 0 1 1 0 | 0 1 0 0 1 1 ...x .... .... .... | 0 0 0 2 | * * * * * * * * * * 24 * | 0 0 0 0 0 0 0 0 0 0 2 0 1 | 0 2 0 0 0 1 .... ...x .... .... | 0 0 0 2 | * * * * * * * * * * * 24 | 0 0 0 0 0 0 0 2 0 0 0 0 1 | 0 2 0 0 1 0 -------------------------+-------------+-------------------------------------+---------------------------------------+---------------- x...3x... .... .... | 6 0 0 0 | 3 3 0 0 0 0 0 0 0 0 0 0 | 16 * * * * * * * * * * * * | 1 1 0 0 0 0 x... .... x... .... | 4 0 0 0 | 2 0 2 0 0 0 0 0 0 0 0 0 | * 24 * * * * * * * * * * * | 1 0 1 0 0 0 .... x...4x... .... | 8 0 0 0 | 0 4 4 0 0 0 0 0 0 0 0 0 | * * 12 * * * * * * * * * * | 1 0 0 1 0 0 xux. .... .... ....&#xt | 2 2 2 0 | 1 0 0 2 0 0 2 1 0 0 0 0 | * * * 48 * * * * * * * * * | 0 1 1 0 0 0 .... xx.. .... ....&#x | 2 2 0 0 | 0 1 0 2 1 0 0 0 0 0 0 0 | * * * * 48 * * * * * * * * | 0 1 0 1 0 0 .... .... xx.. ....&#x | 2 2 0 0 | 0 0 1 2 0 1 0 0 0 0 0 0 | * * * * * 48 * * * * * * * | 0 0 1 1 0 0 .... .x..4.x.. .... | 0 8 0 0 | 0 0 0 0 4 4 0 0 0 0 0 0 | * * * * * * 12 * * * * * * | 0 0 0 1 1 0 .... .xux .... ....&#xt | 0 2 2 2 | 0 0 0 0 1 0 2 0 0 2 0 1 | * * * * * * * 48 * * * * * | 0 1 0 0 1 0 .... .... .xx. ....&#x | 0 2 2 0 | 0 0 0 0 0 1 2 0 1 0 0 0 | * * * * * * * * 48 * * * * | 0 0 1 0 1 0 ..x. .... ..x. .... | 0 0 4 0 | 0 0 0 0 0 0 0 2 2 0 0 0 | * * * * * * * * * 24 * * * | 0 0 1 0 0 1 ..xx .... .... ....&#x | 0 0 2 2 | 0 0 0 0 0 0 0 1 0 2 1 0 | * * * * * * * * * * 48 * * | 0 1 0 0 0 1 .... .... ..xw ..qo&#zx | 0 0 4 2 | 0 0 0 0 0 0 0 0 2 4 0 0 | * * * * * * * * * * * 24 * | 0 0 0 0 1 1 {(h,H,H)2} ...x3...x .... .... | 0 0 0 6 | 0 0 0 0 0 0 0 0 0 0 3 3 | * * * * * * * * * * * * 8 | 0 2 0 0 0 0 -------------------------+-------------+-------------------------------------+---------------------------------------+---------------- x...3x...4x... .... ♦ 48 0 0 0 | 24 24 24 0 0 0 0 0 0 0 0 0 | 8 12 6 0 0 0 0 0 0 0 0 0 0 | 2 * * * * * xuxx3xxux .... ....&#xt ♦ 6 6 6 6 | 3 3 0 6 3 0 6 3 0 6 3 3 | 1 0 0 3 3 0 0 3 0 0 3 0 1 | * 16 * * * * xux. .... xxx. ....&#xt ♦ 4 4 4 0 | 2 0 2 4 0 2 4 2 2 0 0 0 | 0 1 0 2 0 2 0 0 2 1 0 0 0 | * * 24 * * * .... xx..4xx.. ....&#x ♦ 8 8 0 0 | 0 4 4 8 4 4 0 0 0 0 0 0 | 0 0 1 0 4 4 1 0 0 0 0 0 0 | * * * 12 * * .... .xux4.xxw .Qqo&#zxt ♦ 0 16 16 8 | 0 0 0 0 8 8 16 0 8 16 0 4 | 0 0 0 0 0 0 2 8 8 0 0 4 0 | * * * * 6 * ..xx .... ..xw ..qo&#zx ♦ 0 0 8 4 | 0 0 0 0 0 0 0 4 4 8 2 0 | 0 0 0 0 0 0 0 0 0 2 4 2 0 | * * * * * 12
© 2004-2025 | top of page |