Acronym pac gidpith
Name partially (mono-)contracted gidpith
Lace city
in approx. ASCII-art
    x4x u4x x4w   x4w u4x x4x    
                                 
x4x     D4x u4w   u4w D4x     x4x
                                 
u4x D4x     x4X   x4X     D4x u4x		D=3x
                                 		X=x+2q
x4w u4w x4X           x4X u4w x4w
                                 
u4x D4x     x4X   x4X     D4x u4x
                                 
x4x     D4x u4w   u4w D4x     x4x
                                 
    x4x u4x x4w   x4w u4x x4x    
Face vector 336, 672, 408, 72
Confer
uniform relative:
gidpith  
related CnRFs:
pextico   pabextico  
general polytopal classes:
partial Stott expansions  

The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.


Incidence matrix according to Dynkin symbol

xuxxxux3xxuxuxx4xxxwxxx&#xt   → all heights = 1/sqrt(2) = 0.707107
(girco || (u,x,x)-girco || (x,u,x)-girco || (x,x,w)-girco || (x,u,x)-girco || (u,x,x)-girco || girco)

o......3o......4o......     & | 96  *  *  * |  1  1  1  1  0  0  0  0  0  0  0  0 |  1  1  1  1  1  1  0  0  0  0  0  0 0 | 1  1  1  1 0  0
.o.....3.o.....4.o.....     & |  * 96  *  * |  0  0  0  1  1  1  1  0  0  0  0  0 |  0  0  0  1  1  1  1  1  1  0  0  0 0 | 0  1  1  1 1  0
..o....3..o....4..o....     & |  *  * 96  * |  0  0  0  0  0  0  1  1  1  1  0  0 |  0  0  0  1  0  0  0  1  1  1  1  1 0 | 0  1  1  0 1  1
...o...3...o...4...o...       |  *  *  * 48 |  0  0  0  0  0  0  0  0  0  2  1  1 |  0  0  0  0  0  0  0  2  0  0  2  1 1 | 0  2  0  0 1  1
------------------------------+-------------+-------------------------------------+---------------------------------------+----------------
x...... ....... .......     & |  2  0  0  0 | 48  *  *  *  *  *  *  *  *  *  *  * |  1  1  0  1  0  0  0  0  0  0  0  0 0 | 1  1  1  0 0  0
....... x...... .......     & |  2  0  0  0 |  * 48  *  *  *  *  *  *  *  *  *  * |  1  0  1  0  1  0  0  0  0  0  0  0 0 | 1  1  0  1 0  0
....... ....... x......     & |  2  0  0  0 |  *  * 48  *  *  *  *  *  *  *  *  * |  0  1  1  0  0  1  0  0  0  0  0  0 0 | 1  0  1  1 0  0
oo.....3oo.....4oo.....&#x  & |  1  1  0  0 |  *  *  * 96  *  *  *  *  *  *  *  * |  0  0  0  1  1  1  0  0  0  0  0  0 0 | 0  1  1  1 0  0
....... .x..... .......     & |  0  2  0  0 |  *  *  *  * 48  *  *  *  *  *  *  * |  0  0  0  0  1  0  1  1  0  0  0  0 0 | 0  1  0  1 1  0
....... ....... .x.....     & |  0  2  0  0 |  *  *  *  *  * 48  *  *  *  *  *  * |  0  0  0  0  0  1  1  0  1  0  0  0 0 | 0  0  1  1 1  0
.oo....3.oo....4.oo....&#x  & |  0  1  1  0 |  *  *  *  *  *  * 96  *  *  *  *  * |  0  0  0  1  0  0  0  1  1  0  0  0 0 | 0  1  1  0 1  0
..x.... ....... .......     & |  0  0  2  0 |  *  *  *  *  *  *  * 48  *  *  *  * |  0  0  0  1  0  0  0  0  0  1  1  0 0 | 0  1  1  0 0  1
....... ....... ..x....     & |  0  0  2  0 |  *  *  *  *  *  *  *  * 48  *  *  * |  0  0  0  0  0  0  0  0  1  1  0  1 0 | 0  0  1  0 1  1
..oo...3..oo...4..oo...&#x  & |  0  0  1  1 |  *  *  *  *  *  *  *  *  * 96  *  * |  0  0  0  0  0  0  0  1  0  0  1  1 0 | 0  1  0  0 1  1
...x... ....... .......       |  0  0  0  2 |  *  *  *  *  *  *  *  *  *  * 24  * |  0  0  0  0  0  0  0  0  0  0  2  0 1 | 0  2  0  0 0  1
....... ...x... .......       |  0  0  0  2 |  *  *  *  *  *  *  *  *  *  *  * 24 |  0  0  0  0  0  0  0  2  0  0  0  0 1 | 0  2  0  0 1  0
------------------------------+-------------+-------------------------------------+---------------------------------------+----------------
x......3x...... .......     & |  6  0  0  0 |  3  3  0  0  0  0  0  0  0  0  0  0 | 16  *  *  *  *  *  *  *  *  *  *  * * | 1  1  0  0 0  0
x...... ....... x......     & |  4  0  0  0 |  2  0  2  0  0  0  0  0  0  0  0  0 |  * 24  *  *  *  *  *  *  *  *  *  * * | 1  0  1  0 0  0
....... x......4x......     & |  8  0  0  0 |  0  4  4  0  0  0  0  0  0  0  0  0 |  *  * 12  *  *  *  *  *  *  *  *  * * | 1  0  0  1 0  0
xux.... ....... .......&#xt & |  2  2  2  0 |  1  0  0  2  0  0  2  1  0  0  0  0 |  *  *  * 48  *  *  *  *  *  *  *  * * | 0  1  1  0 0  0
....... xx..... .......&#x  & |  2  2  0  0 |  0  1  0  2  1  0  0  0  0  0  0  0 |  *  *  *  * 48  *  *  *  *  *  *  * * | 0  1  0  1 0  0
....... ....... xx.....&#x  & |  2  2  0  0 |  0  0  1  2  0  1  0  0  0  0  0  0 |  *  *  *  *  * 48  *  *  *  *  *  * * | 0  0  1  1 0  0
....... .x.....4.x.....     & |  0  8  0  0 |  0  0  0  0  4  4  0  0  0  0  0  0 |  *  *  *  *  *  * 12  *  *  *  *  * * | 0  0  0  1 1  0
....... .xux... .......&#xt & |  0  2  2  2 |  0  0  0  0  1  0  2  0  0  2  0  1 |  *  *  *  *  *  *  * 48  *  *  *  * * | 0  1  0  0 1  0
....... ....... .xx....&#x  & |  0  2  2  0 |  0  0  0  0  0  1  2  0  1  0  0  0 |  *  *  *  *  *  *  *  * 48  *  *  * * | 0  0  1  0 1  0
..x.... ....... ..x....     & |  0  0  4  0 |  0  0  0  0  0  0  0  2  2  0  0  0 |  *  *  *  *  *  *  *  *  * 24  *  * * | 0  0  1  0 0  1
..xx... ....... .......&#x  & |  0  0  2  2 |  0  0  0  0  0  0  0  1  0  2  1  0 |  *  *  *  *  *  *  *  *  *  * 48  * * | 0  1  0  0 0  1
....... ....... ..xwx..&#xt   |  0  0  4  2 |  0  0  0  0  0  0  0  0  2  4  0  0 |  *  *  *  *  *  *  *  *  *  *  * 24 * | 0  0  0  0 1  1  {(h,H,H)2}
...x...3...x... .......       |  0  0  0  6 |  0  0  0  0  0  0  0  0  0  0  3  3 |  *  *  *  *  *  *  *  *  *  *  *  * 8 | 0  2  0  0 0  0
------------------------------+-------------+-------------------------------------+---------------------------------------+----------------
x......3x......4x......     &  48  0  0  0 | 24 24 24  0  0  0  0  0  0  0  0  0 |  8 12  6  0  0  0  0  0  0  0  0  0 0 | 2  *  *  * *  *
xuxx...3xxux... .......&#xt &   6  6  6  6 |  3  3  0  6  3  0  6  3  0  6  3  3 |  1  0  0  3  3  0  0  3  0  0  3  0 1 | * 16  *  * *  *
xux.... ....... xxx....&#xt &   4  4  4  0 |  2  0  2  4  0  2  4  2  2  0  0  0 |  0  1  0  2  0  2  0  0  2  1  0  0 0 | *  * 24  * *  *
....... xx.....4xx.....&#x  &   8  8  0  0 |  0  4  4  8  4  4  0  0  0  0  0  0 |  0  0  1  0  4  4  1  0  0  0  0  0 0 | *  *  * 12 *  *
....... .xuxux.4.xxwxx.&#xt     0 16 16  8 |  0  0  0  0  8  8 16  0  8 16  0  4 |  0  0  0  0  0  0  2  8  8  0  0  4 0 | *  *  *  * 6  *
..xxx.. ....... ..xwx..&#xt     0  0  8  4 |  0  0  0  0  0  0  0  4  4  8  2  0 |  0  0  0  0  0  0  0  0  0  2  4  2 0 | *  *  *  * * 12

xuxx3xxux4xxxw ZQqo&#xt   → heights = 0, Z=3q = 4.242641
(tegum sum of (x,x,x,Z)-gircope, (u,x,x,Q)-gircope, (x,u,x,q)-gircope, and (x,x,w)-girco)

o...3o...4o... o...      | 96  *  *  * |  1  1  1  1  0  0  0  0  0  0  0  0 |  1  1  1  1  1  1  0  0  0  0  0  0 0 | 1  1  1  1 0  0
.o..3.o..4.o.. .o..      |  * 96  *  * |  0  0  0  1  1  1  1  0  0  0  0  0 |  0  0  0  1  1  1  1  1  1  0  0  0 0 | 0  1  1  1 1  0
..o.3..o.4..o. ..o.      |  *  * 96  * |  0  0  0  0  0  0  1  1  1  1  0  0 |  0  0  0  1  0  0  0  1  1  1  1  1 0 | 0  1  1  0 1  1
...o3...o4...o ...o      |  *  *  * 48 |  0  0  0  0  0  0  0  0  0  2  1  1 |  0  0  0  0  0  0  0  2  0  0  2  1 1 | 0  2  0  0 1  1
-------------------------+-------------+-------------------------------------+---------------------------------------+----------------
x... .... .... ....      |  2  0  0  0 | 48  *  *  *  *  *  *  *  *  *  *  * |  1  1  0  1  0  0  0  0  0  0  0  0 0 | 1  1  1  0 0  0
.... x... .... ....      |  2  0  0  0 |  * 48  *  *  *  *  *  *  *  *  *  * |  1  0  1  0  1  0  0  0  0  0  0  0 0 | 1  1  0  1 0  0
.... .... x... ....      |  2  0  0  0 |  *  * 48  *  *  *  *  *  *  *  *  * |  0  1  1  0  0  1  0  0  0  0  0  0 0 | 1  0  1  1 0  0
oo..3oo..4oo.. oo..&#x   |  1  1  0  0 |  *  *  * 96  *  *  *  *  *  *  *  * |  0  0  0  1  1  1  0  0  0  0  0  0 0 | 0  1  1  1 0  0
.... .x.. .... ....      |  0  2  0  0 |  *  *  *  * 48  *  *  *  *  *  *  * |  0  0  0  0  1  0  1  1  0  0  0  0 0 | 0  1  0  1 1  0
.... .... .x.. ....      |  0  2  0  0 |  *  *  *  *  * 48  *  *  *  *  *  * |  0  0  0  0  0  1  1  0  1  0  0  0 0 | 0  0  1  1 1  0
.oo.3.oo.4.oo. .oo.&#x   |  0  1  1  0 |  *  *  *  *  *  * 96  *  *  *  *  * |  0  0  0  1  0  0  0  1  1  0  0  0 0 | 0  1  1  0 1  0
..x. .... .... ....      |  0  0  2  0 |  *  *  *  *  *  *  * 48  *  *  *  * |  0  0  0  1  0  0  0  0  0  1  1  0 0 | 0  1  1  0 0  1
.... .... ..x. ....      |  0  0  2  0 |  *  *  *  *  *  *  *  * 48  *  *  * |  0  0  0  0  0  0  0  0  1  1  0  1 0 | 0  0  1  0 1  1
..oo3..oo4..oo ..oo&#x   |  0  0  1  1 |  *  *  *  *  *  *  *  *  * 96  *  * |  0  0  0  0  0  0  0  1  0  0  1  1 0 | 0  1  0  0 1  1
...x .... .... ....      |  0  0  0  2 |  *  *  *  *  *  *  *  *  *  * 24  * |  0  0  0  0  0  0  0  0  0  0  2  0 1 | 0  2  0  0 0  1
.... ...x .... ....      |  0  0  0  2 |  *  *  *  *  *  *  *  *  *  *  * 24 |  0  0  0  0  0  0  0  2  0  0  0  0 1 | 0  2  0  0 1  0
-------------------------+-------------+-------------------------------------+---------------------------------------+----------------
x...3x... .... ....      |  6  0  0  0 |  3  3  0  0  0  0  0  0  0  0  0  0 | 16  *  *  *  *  *  *  *  *  *  *  * * | 1  1  0  0 0  0
x... .... x... ....      |  4  0  0  0 |  2  0  2  0  0  0  0  0  0  0  0  0 |  * 24  *  *  *  *  *  *  *  *  *  * * | 1  0  1  0 0  0
.... x...4x... ....      |  8  0  0  0 |  0  4  4  0  0  0  0  0  0  0  0  0 |  *  * 12  *  *  *  *  *  *  *  *  * * | 1  0  0  1 0  0
xux. .... .... ....&#xt  |  2  2  2  0 |  1  0  0  2  0  0  2  1  0  0  0  0 |  *  *  * 48  *  *  *  *  *  *  *  * * | 0  1  1  0 0  0
.... xx.. .... ....&#x   |  2  2  0  0 |  0  1  0  2  1  0  0  0  0  0  0  0 |  *  *  *  * 48  *  *  *  *  *  *  * * | 0  1  0  1 0  0
.... .... xx.. ....&#x   |  2  2  0  0 |  0  0  1  2  0  1  0  0  0  0  0  0 |  *  *  *  *  * 48  *  *  *  *  *  * * | 0  0  1  1 0  0
.... .x..4.x.. ....      |  0  8  0  0 |  0  0  0  0  4  4  0  0  0  0  0  0 |  *  *  *  *  *  * 12  *  *  *  *  * * | 0  0  0  1 1  0
.... .xux .... ....&#xt  |  0  2  2  2 |  0  0  0  0  1  0  2  0  0  2  0  1 |  *  *  *  *  *  *  * 48  *  *  *  * * | 0  1  0  0 1  0
.... .... .xx. ....&#x   |  0  2  2  0 |  0  0  0  0  0  1  2  0  1  0  0  0 |  *  *  *  *  *  *  *  * 48  *  *  * * | 0  0  1  0 1  0
..x. .... ..x. ....      |  0  0  4  0 |  0  0  0  0  0  0  0  2  2  0  0  0 |  *  *  *  *  *  *  *  *  * 24  *  * * | 0  0  1  0 0  1
..xx .... .... ....&#x   |  0  0  2  2 |  0  0  0  0  0  0  0  1  0  2  1  0 |  *  *  *  *  *  *  *  *  *  * 48  * * | 0  1  0  0 0  1
.... .... ..xw ..qo&#zx  |  0  0  4  2 |  0  0  0  0  0  0  0  0  2  4  0  0 |  *  *  *  *  *  *  *  *  *  *  * 24 * | 0  0  0  0 1  1  {(h,H,H)2}
...x3...x .... ....      |  0  0  0  6 |  0  0  0  0  0  0  0  0  0  0  3  3 |  *  *  *  *  *  *  *  *  *  *  *  * 8 | 0  2  0  0 0  0
-------------------------+-------------+-------------------------------------+---------------------------------------+----------------
x...3x...4x... ....       48  0  0  0 | 24 24 24  0  0  0  0  0  0  0  0  0 |  8 12  6  0  0  0  0  0  0  0  0  0 0 | 2  *  *  * *  *
xuxx3xxux .... ....&#xt    6  6  6  6 |  3  3  0  6  3  0  6  3  0  6  3  3 |  1  0  0  3  3  0  0  3  0  0  3  0 1 | * 16  *  * *  *
xux. .... xxx. ....&#xt    4  4  4  0 |  2  0  2  4  0  2  4  2  2  0  0  0 |  0  1  0  2  0  2  0  0  2  1  0  0 0 | *  * 24  * *  *
.... xx..4xx.. ....&#x     8  8  0  0 |  0  4  4  8  4  4  0  0  0  0  0  0 |  0  0  1  0  4  4  1  0  0  0  0  0 0 | *  *  * 12 *  *
.... .xux4.xxw .Qqo&#zxt   0 16 16  8 |  0  0  0  0  8  8 16  0  8 16  0  4 |  0  0  0  0  0  0  2  8  8  0  0  4 0 | *  *  *  * 6  *
..xx .... ..xw ..qo&#zx    0  0  8  4 |  0  0  0  0  0  0  0  4  4  8  2  0 |  0  0  0  0  0  0  0  0  0  2  4  2 0 | *  *  *  * * 12

© 2004-2025
top of page