Acronym | pextoe |
Name | partially (mono-)expanded truncated octahedron |
| |
Circumradius | ... |
Vertex figure | [4,6,6], [h,6,6], [4,6,H] |
Lace city in approx. ASCII-art |
o q q o o Q Q o (Q=2q) q Q Q q o Q Q o o q q o |
x w x x W x (W=u+w) w W W w x W x x w x | |
Dihedral angles
(at margins) |
|
Face vector | 32, 48, 18 |
Confer |
|
The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.
Incidence matrix according to Dynkin symbol
xuxxux4ooqqoo&#xt → all but medial heights = 1/sqrt(2) = 0.707107 medial height = 1 ({4} || pseudo u-{4} || pseudo (x,q)-{8} || pseudo (x,q)-{8} || pseudo u-{4} || {4}) o.....4o..... | 4 * * * * * | 2 1 0 0 0 0 0 0 0 | 1 2 0 0 0 0 [4,6,6] .o....4.o.... | * 4 * * * * | 0 1 2 0 0 0 0 0 0 | 0 2 1 0 0 0 [h,6,6] ..o...4..o... | * * 8 * * * | 0 0 1 1 1 0 0 0 0 | 0 1 1 1 0 0 [4,6,H] ...o..4...o.. | * * * 8 * * | 0 0 0 0 1 1 1 0 0 | 0 0 1 1 1 0 [4,6,H] ....o.4....o. | * * * * 4 * | 0 0 0 0 0 0 2 1 0 | 0 0 1 0 2 0 [h,6,6] .....o4.....o | * * * * * 4 | 0 0 0 0 0 0 0 1 2 | 0 0 0 0 2 1 [4,6,6] ------------------+-------------+-------------------+------------ x..... ...... | 2 0 0 0 0 0 | 4 * * * * * * * * | 1 1 0 0 0 0 oo....4oo....&#x | 1 1 0 0 0 0 | * 4 * * * * * * * | 0 2 0 0 0 0 .oo...4.oo...&#x | 0 1 1 0 0 0 | * * 8 * * * * * * | 0 1 1 0 0 0 ..x... ...... | 0 0 2 0 0 0 | * * * 4 * * * * * | 0 1 0 1 0 0 ..oo..4..oo..&#x | 0 0 1 1 0 0 | * * * * 8 * * * * | 0 0 1 1 0 0 ...x.. ...... | 0 0 0 2 0 0 | * * * * * 4 * * * | 0 0 0 1 1 0 ...oo.4...oo.&#x | 0 0 0 1 1 0 | * * * * * * 8 * * | 0 0 1 0 1 0 ....oo4....oo&#x | 0 0 0 0 1 1 | * * * * * * * 4 * | 0 0 0 0 2 0 .....x ...... | 0 0 0 0 0 2 | * * * * * * * * 4 | 0 0 0 0 1 1 ------------------+-------------+-------------------+------------ x.....4o..... | 4 0 0 0 0 0 | 4 0 0 0 0 0 0 0 0 | 1 * * * * * xux... ......&#xt | 2 2 2 0 0 0 | 1 2 2 1 0 0 0 0 0 | * 4 * * * * {6} ...... .oqqo.&#xt | 0 1 2 2 1 0 | 0 0 2 0 2 0 2 0 0 | * * 4 * * * {(h,H,H)2} ..xx.. ......&#x | 0 0 2 2 0 0 | 0 0 0 1 2 1 0 0 0 | * * * 4 * * ...xux ......&#xt | 0 0 0 2 2 2 | 0 0 0 0 0 1 2 2 1 | * * * * 4 * {6} .....x4.....o | 0 0 0 0 0 4 | 0 0 0 0 0 0 0 0 4 | * * * * * 1
or o.....4o..... & | 8 * * | 2 1 0 0 0 | 1 2 0 0 [4,6,6] .o....4.o.... & | * 8 * | 0 1 2 0 0 | 0 2 1 0 [h,6,6] ..o...4..o... & | * * 16 | 0 0 1 1 1 | 0 1 1 1 [4,6,H] --------------------+--------+------------+-------- x..... ...... & | 2 0 0 | 8 * * * * | 1 1 0 0 oo....4oo....&#x & | 1 1 0 | * 8 * * * | 0 2 0 0 .oo...4.oo...&#x & | 0 1 1 | * * 16 * * | 0 1 1 0 ..x... ...... & | 0 0 2 | * * * 8 * | 0 1 0 1 ..oo..4..oo..&#x | 0 0 2 | * * * * 8 | 0 0 1 1 --------------------+--------+------------+-------- x.....4o..... & | 4 0 0 | 4 0 0 0 0 | 2 * * * xux... ......&#xt & | 2 2 2 | 1 2 2 1 0 | * 8 * * {6} ...... .oqqo.&#xt | 0 2 4 | 0 0 4 0 2 | * * 4 * {(h,H,H)2} ..xx.. ......&#x | 0 0 4 | 0 0 0 2 2 | * * * 4
xux4ooq Xwx&#zx → heights = 0, where X=w+q = 3.828427 o..4o.. o.. | 8 * * | 2 1 0 0 0 | 1 2 0 0 [4,6,6] .o.4.o. .o. | * 8 * | 0 1 2 0 0 | 0 2 1 0 [h,6,6] ..o4..o ..o | * * 16 | 0 0 1 1 1 | 0 1 1 1 [4,6,H] ----------------+--------+------------+-------- x.. ... ... | 2 0 0 | 8 * * * * | 1 1 0 0 oo.4oo. oo.&#x | 1 1 0 | * 8 * * * | 0 2 0 0 .oo4.oo .oo&#x | 0 1 1 | * * 16 * * | 0 1 1 0 ..x ... ... | 0 0 2 | * * * 8 * | 0 1 0 1 ... ... ..x | 0 0 2 | * * * * 8 | 0 0 1 1 ----------------+--------+------------+-------- x..4o.. ... | 4 0 0 | 4 0 0 0 0 | 2 * * * xux ... ...&#xt | 2 2 2 | 1 2 2 1 0 | * 8 * * {6} ... .oq .wx&#zx | 0 2 4 | 0 0 4 0 2 | * * 4 * {(h,H,H)2} ..x ... ..x | 0 0 4 | 0 0 0 2 2 | * * * 4
© 2004-2024 | top of page |