Acronym | pex rat |
Name | partially expanded rectified triacontiditeron |
Circumradius | ... |
Lace city in approx. ASCII-art |
o3o4o x3o4o o3o4o -- x3o3o4o (hex) x3o4o o3x4o x3o4o -- o3x3o4o (ico) x3o4o o3x4o x3o4o -- o3x3o4o (ico) o3o4o x3o4o o3o4o -- x3o3o4o (hex) | | +-- pex hex | +--------- pexic +---------------- pex hex |
line esquidpy line -- pex hex esquidpy pexco esquidpy -- pexic line esquidpy line -- pex hex | |
Coordinates |
|
Face vector | 64, 360, 592, 352, 58 |
Confer |
|
This CRF polyteron can be obtained from rat by partial Stott expanding only within axial direction orthogonally to an equatorial ico cross-section. In fact it just introduces there an icope in between the two hexaicoes of either side. Thence it could be seen as an external blend of these 3 components.
Incidence matrix according to Dynkin symbol
wx xo3ox3oo4oo&#zx → height = 0 o. o.3o.3o.4o. | 16 * | 6 6 0 0 | 12 6 12 0 0 0 | 8 12 8 0 0 0 | 1 1 8 0 .o .o3.o3.o4.o | * 48 | 0 2 1 8 | 0 1 8 8 4 8 | 0 4 8 4 8 4 | 0 2 4 4 -------------------+-------+--------------+---------------------+--------------------+---------- .. x. .. .. .. | 2 0 | 48 * * * | 4 1 0 0 0 0 | 4 4 0 0 0 0 | 1 0 4 0 oo oo3oo3oo4oo&#x | 1 1 | * 96 * * | 0 1 4 0 0 0 | 0 4 4 0 0 0 | 0 1 4 0 .x .. .. .. .. | 0 2 | * * 24 * ♦ 0 0 0 8 0 0 | 0 0 0 4 8 0 | 0 2 0 4 .. .. .x .. .. | 0 2 | * * * 192 | 0 0 1 1 1 2 | 0 1 2 1 2 2 | 0 1 2 2 -------------------+-------+--------------+---------------------+--------------------+---------- .. x.3o. .. .. | 3 0 | 3 0 0 0 | 64 * * * * * | 2 1 0 0 0 0 | 1 0 2 0 .. xo .. .. ..&#x | 2 1 | 1 2 0 0 | * 48 * * * * | 0 4 0 0 0 0 | 0 0 4 0 .. .. ox .. ..&#x | 1 2 | 0 2 0 1 | * * 192 * * * | 0 1 2 0 0 0 | 0 1 2 0 .x .. .x .. .. | 0 4 | 0 0 2 2 | * * * 96 * * | 0 0 0 1 2 0 | 0 1 0 2 .. .o3.x .. .. | 0 3 | 0 0 0 3 | * * * * 64 * | 0 1 0 1 0 2 | 0 0 2 2 .. .. .x3.o .. | 0 3 | 0 0 0 3 | * * * * * 128 | 0 0 1 0 1 1 | 0 1 1 1 -------------------+-------+--------------+---------------------+--------------------+---------- .. x.3o.3o. .. ♦ 4 0 | 6 0 0 0 | 4 0 0 0 0 0 | 32 * * * * * | 1 0 1 0 .. xo3ox .. ..&#x ♦ 3 3 | 3 6 0 3 | 1 3 3 0 1 0 | * 64 * * * * | 0 0 2 0 .. .. ox3oo ..&#x ♦ 1 3 | 0 3 0 3 | 0 0 3 0 0 1 | * * 128 * * * | 0 1 1 0 .x .o3.x .. .. ♦ 0 6 | 0 0 3 6 | 0 0 0 3 2 0 | * * * 32 * * | 0 0 0 2 .x .. .x3.o .. ♦ 0 6 | 0 0 3 6 | 0 0 0 3 0 2 | * * * * 64 * | 0 1 0 1 .. .o3.x3.o .. ♦ 0 6 | 0 0 0 12 | 0 0 0 0 4 4 | * * * * * 32 | 0 0 1 1 -------------------+-------+--------------+---------------------+--------------------+---------- .. x.3o.3o.4o. ♦ 8 0 | 24 0 0 0 | 32 0 0 0 0 0 | 16 0 0 0 0 0 | 2 * * * wx .. ox3oo4oo&#zx ♦ 2 12 | 0 12 6 24 | 0 0 24 12 0 16 | 0 0 16 0 8 0 | * 8 * * .. xo3ox3oo ..&#x ♦ 4 6 | 6 12 0 12 | 4 6 12 0 4 4 | 1 4 4 0 0 1 | * * 32 * .x .o3.x3.o .. ♦ 0 12 | 0 0 6 24 | 0 0 0 12 8 8 | 0 0 0 4 4 2 | * * * 16
© 2004-2025 | top of page |