Acronym pex rat Name partially expanded rectified triacontiditeron Circumradius ... Lace cityin approx. ASCII-art ```o3o4o x3o4o o3o4o -- x3o3o4o (hex) x3o4o o3x4o x3o4o -- o3x3o4o (ico) x3o4o o3x4o x3o4o -- o3x3o4o (ico) o3o4o x3o4o o3o4o -- x3o3o4o (hex) | | +-- pex hex | +--------- pexic +---------------- pex hex ``` ``` line esquidpy line -- pex hex esquidpy pexco esquidpy -- pexic line esquidpy line -- pex hex ``` Coordinates (1/sqrt(2), 0, 0, 0; (1+sqrt(2))/2)   & all permutations within all but last coord, all changes of sign (1/sqrt(2), 1/sqrt(2), 0, 0; 1/2)       & all permutations within all but last coord, all changes of sign Confer uniform relative: rat   span   icope   related segmentotera: hexaico   general polytopal classes: partial Stott expansions

This CRF polyteron can be obtained from rat by partial Stott expanding only within axial direction orthogonally to an equatorial ico cross-section. In fact it just introduces there an icope in between the two hexaicoes of either side. Thence it could be seen as an external blend of these 3 components.

Incidence matrix according to Dynkin symbol

```wx xo3ox3oo4oo&#zx   → height = 0

o. o.3o.3o.4o.     | 16  * |  6  6  0   0 | 12  6  12  0  0   0 |  8 12   8  0  0  0 | 1 1  8  0
.o .o3.o3.o4.o     |  * 48 |  0  2  1   8 |  0  1   8  8  4   8 |  0  4   8  4  8  4 | 0 2  4  4
-------------------+-------+--------------+---------------------+--------------------+----------
.. x. .. .. ..     |  2  0 | 48  *  *   * |  4  1   0  0  0   0 |  4  4   0  0  0  0 | 1 0  4  0
oo oo3oo3oo4oo&#x  |  1  1 |  * 96  *   * |  0  1   4  0  0   0 |  0  4   4  0  0  0 | 0 1  4  0
.x .. .. .. ..     |  0  2 |  *  * 24   * ♦  0  0   0  8  0   0 |  0  0   0  4  8  0 | 0 2  0  4
.. .. .x .. ..     |  0  2 |  *  *  * 192 |  0  0   1  1  1   2 |  0  1   2  1  2  2 | 0 1  2  2
-------------------+-------+--------------+---------------------+--------------------+----------
.. x.3o. .. ..     |  3  0 |  3  0  0   0 | 64  *   *  *  *   * |  2  1   0  0  0  0 | 1 0  2  0
.. xo .. .. ..&#x  |  2  1 |  1  2  0   0 |  * 48   *  *  *   * |  0  4   0  0  0  0 | 0 0  4  0
.. .. ox .. ..&#x  |  1  2 |  0  2  0   1 |  *  * 192  *  *   * |  0  1   2  0  0  0 | 0 1  2  0
.x .. .x .. ..     |  0  4 |  0  0  2   2 |  *  *   * 96  *   * |  0  0   0  1  2  0 | 0 1  0  2
.. .o3.x .. ..     |  0  3 |  0  0  0   3 |  *  *   *  * 64   * |  0  1   0  1  0  2 | 0 0  2  2
.. .. .x3.o ..     |  0  3 |  0  0  0   3 |  *  *   *  *  * 128 |  0  0   1  0  1  1 | 0 1  1  1
-------------------+-------+--------------+---------------------+--------------------+----------
.. x.3o.3o. ..     ♦  4  0 |  6  0  0   0 |  4  0   0  0  0   0 | 32  *   *  *  *  * | 1 0  1  0
.. xo3ox .. ..&#x  ♦  3  3 |  3  6  0   3 |  1  3   3  0  1   0 |  * 64   *  *  *  * | 0 0  2  0
.. .. ox3oo ..&#x  ♦  1  3 |  0  3  0   3 |  0  0   3  0  0   1 |  *  * 128  *  *  * | 0 1  1  0
.x .o3.x .. ..     ♦  0  6 |  0  0  3   6 |  0  0   0  3  2   0 |  *  *   * 32  *  * | 0 0  0  2
.x .. .x3.o ..     ♦  0  6 |  0  0  3   6 |  0  0   0  3  0   2 |  *  *   *  * 64  * | 0 1  0  1
.. .o3.x3.o ..     ♦  0  6 |  0  0  0  12 |  0  0   0  0  4   4 |  *  *   *  *  * 32 | 0 0  1  1
-------------------+-------+--------------+---------------------+--------------------+----------
.. x.3o.3o.4o.     ♦  8  0 | 24  0  0   0 | 32  0   0  0  0   0 | 16  0   0  0  0  0 | 2 *  *  *
wx .. ox3oo4oo&#zx ♦  2 12 |  0 12  6  24 |  0  0  24 12  0  16 |  0  0  16  0  8  0 | * 8  *  *
.. xo3ox3oo ..&#x  ♦  4  6 |  6 12  0  12 |  4  6  12  0  4   4 |  1  4   4  0  0  1 | * * 32  *
.x .o3.x3.o ..     ♦  0 12 |  0  0  6  24 |  0  0   0 12  8   8 |  0  0   0  4  4  2 | * *  * 16
```