Acronym pacsirn
Name partially contracted small rhombated penteract
Circumradius ...
Lace city
in approx. ASCII-art
x3o4x  o3x4x    o3x4x  x3o4x		-- o3x3o4x (srit)
                            
                            
                            
o3x4x  o3o4w    o3o4w  o3x4x		-- o3o3x4x (tat)
                            
                            
                            
x3o4x  o3x4x    o3x4x  x3o4x		-- o3x3o4x (srit)

  |      |        |      +-- pacsrit
  |      |        +--------- pactat
  |      +------------------ pactat
  +------------------------- pacsrit
Coordinates
  • (1/sqrt(2); 1/2, 1/2, (1+sqrt(2))/2, (1+sqrt(2))/2)         & all permutations within all but first coord, all changes of sign
  • (0; 1/2, (1+sqrt(2))/2, (1+sqrt(2))/2, (1+sqrt(2))/2)     & all permutations within all but first coord, all changes of sign
Confer
uniform relative:
nit   sirn   tattip  
general polytopal classes:
partial Stott expansions  

This CRF polyteron can be obtained from sirn by partial Stott contraction only within axial directions. In fact it comes down to the withdrawel of its medial segment, the tattip.


Incidence matrix according to Dynkin symbol

qo oo3xo3ox4xx&#zx

o. o.3o.3o.4o.     | 192  * |   4   2   2  0  0 |   2   2   4  1   4   1   2  0 |  1  2  2  1   2   2   4  0 | 1 2  1  2
.o .o3.o3.o4.o     |   * 64 |   0   0   6  3  1 |   0   0   0  0   6   6   6  3 |  0  0  0  3   2   6   6  1 | 0 3  2  2
-------------------+--------+-------------------+-------------------------------+----------------------------+----------
.. .. x. .. ..     |   2  0 | 384   *   *  *  * |   1   1   1  0   1   0   0  0 |  1  1  1  0   1   1   1  0 | 1 1  1  1
.. .. .. .. x.     |   2  0 |   * 192   *  *  * |   0   0   2  1   0   0   1  0 |  0  1  2  1   0   0   2  0 | 1 2  0  1
oo oo3oo3oo4oo&#x  |   1  1 |   *   * 384  *  * |   0   0   0  0   2   1   1  0 |  0  0  0  1   1   2   2  0 | 0 2  1  1
.. .. .. .x ..     |   0  2 |   *   *   * 96  * |   0   0   0  0   0   2   0  2 |  0  0  0  1   0   4   0  1 | 0 2  2  0
.. .. .. .. .x     |   0  2 |   *   *   *  * 32 |   0   0   0  0   0   0   6  0 |  0  0  0  3   0   0   6  0 | 0 3  0  2
-------------------+--------+-------------------+-------------------------------+----------------------------+----------
.. o.3x. .. ..     |   3  0 |   3   0   0  0  0 | 128   *   *  *   *   *   *  * |  1  1  0  0   1   0   0  0 | 1 0  1  1
.. .. x.3o. ..     |   3  0 |   3   0   0  0  0 |   * 128   *  *   *   *   *  * |  1  0  1  0   0   1   0  0 | 1 1  1  0
.. .. x. .. x.     |   4  0 |   2   2   0  0  0 |   *   * 192  *   *   *   *  * |  0  1  1  0   0   0   1  0 | 1 1  0  1
.. .. .. o.4x.     |   4  0 |   0   4   0  0  0 |   *   *   * 48   *   *   *  * |  0  0  2  1   0   0   0  0 | 1 2  0  0
.. .. xo .. ..&#x  |   2  1 |   1   0   2  0  0 |   *   *   *  * 384   *   *  * |  0  0  0  0   1   1   1  0 | 0 1  1  1
.. .. .. ox ..&#x  |   1  2 |   0   0   2  1  0 |   *   *   *  *   * 192   *  * |  0  0  0  1   0   2   0  0 | 0 2  1  0
.. .. .. .. xx&#x  |   2  2 |   0   1   2  0  1 |   *   *   *  *   *   * 192  * |  0  0  0  1   0   0   2  0 | 0 2  0  1
.. .. .o3.x ..     |   0  3 |   0   0   0  3  0 |   *   *   *  *   *   *   * 64 |  0  0  0  0   0   2   0  1 | 0 1  2  0
-------------------+--------+-------------------+-------------------------------+----------------------------+----------
.. o.3x.3o. ..        6  0 |  12   0   0  0  0 |   4   4   0  0   0   0   0  0 | 32  *  *  *   *   *   *  * | 1 0  1  0
.. o.3x. .. x.        6  0 |   6   3   0  0  0 |   2   0   3  0   0   0   0  0 |  * 64  *  *   *   *   *  * | 1 0  0  1
.. .. x.3o.4x.       24  0 |  24  24   0  0  0 |   0   8  12  6   0   0   0  0 |  *  * 16  *   *   *   *  * | 1 1  0  0
qo .. .. ox4xx&#zx    8  8 |   0   8  16  4  4 |   0   0   0  2   0   8   8  0 |  *  *  * 24   *   *   *  * | 0 2  0  0
.. oo3xo .. ..&#x     3  1 |   3   0   3  0  0 |   1   0   0  0   3   0   0  0 |  *  *  *  * 128   *   *  * | 0 0  1  1
.. .. xo3ox ..&#x     3  3 |   3   0   6  3  0 |   0   1   0  0   3   3   0  1 |  *  *  *  *   * 128   *  * | 0 1  1  0
.. .. xo .. xx&#x     4  2 |   2   2   4  0  1 |   0   0   1  0   2   0   2  0 |  *  *  *  *   *   * 192  * | 0 1  0  1
.. .o3.o3.x ..        0  4 |   0   0   0  6  0 |   0   0   0  0   0   0   0  4 |  *  *  *  *   *   *   * 16 | 0 0  2  0
-------------------+--------+-------------------+-------------------------------+----------------------------+----------
.. o.3x.3o.4x.       96  0 | 192  96   0  0  0 |  64  64  96 24   0   0   0  0 | 16 32  8  0   0   0   0  0 | 2 *  *  *
qo .. xo3ox4xx&#zx   48 24 |  48  48  96 24 12 |   0  16  24 12  48  48  48  8 |  0  0  2  6   0  16  24  0 | * 8  *  *
.. oo3xo3ox ..&#x     6  4 |  12   0  12  6  0 |   4   4   0  0  12   6   0  4 |  1  0  0  0   4   4   0  1 | * * 32  *
.. oo3xo .. xx&#x     6  2 |   6   3   6  0  1 |   2   0   3  0   6   0   3  0 |  0  1  0  0   2   0   3  0 | * *  * 64

© 2004-2022
top of page