Acronym pacsirn Name partially contracted small rhombated penteract Circumradius ... Lace cityin approx. ASCII-art ```x3o4x o3x4x o3x4x x3o4x -- o3x3o4x (srit) o3x4x o3o4w o3o4w o3x4x -- o3o3x4x (tat) x3o4x o3x4x o3x4x x3o4x -- o3x3o4x (srit) | | | +-- pacsrit | | +--------- pactat | +------------------ pactat +------------------------- pacsrit ``` Coordinates (1/sqrt(2); 1/2, 1/2, (1+sqrt(2))/2, (1+sqrt(2))/2)         & all permutations within all but first coord, all changes of sign (0; 1/2, (1+sqrt(2))/2, (1+sqrt(2))/2, (1+sqrt(2))/2)     & all permutations within all but first coord, all changes of sign Confer uniform relative: nit   sirn   tattip   general polytopal classes: partial Stott expansions

This CRF polyteron can be obtained from sirn by partial Stott contraction only within axial directions. In fact it comes down to the withdrawel of its medial segment, the tattip.

Incidence matrix according to Dynkin symbol

```qo oo3xo3ox4xx&#zx

o. o.3o.3o.4o.     | 192  * |   4   2   2  0  0 |   2   2   4  1   4   1   2  0 |  1  2  2  1   2   2   4  0 | 1 2  1  2
.o .o3.o3.o4.o     |   * 64 |   0   0   6  3  1 |   0   0   0  0   6   6   6  3 |  0  0  0  3   2   6   6  1 | 0 3  2  2
-------------------+--------+-------------------+-------------------------------+----------------------------+----------
.. .. x. .. ..     |   2  0 | 384   *   *  *  * |   1   1   1  0   1   0   0  0 |  1  1  1  0   1   1   1  0 | 1 1  1  1
.. .. .. .. x.     |   2  0 |   * 192   *  *  * |   0   0   2  1   0   0   1  0 |  0  1  2  1   0   0   2  0 | 1 2  0  1
oo oo3oo3oo4oo&#x  |   1  1 |   *   * 384  *  * |   0   0   0  0   2   1   1  0 |  0  0  0  1   1   2   2  0 | 0 2  1  1
.. .. .. .x ..     |   0  2 |   *   *   * 96  * |   0   0   0  0   0   2   0  2 |  0  0  0  1   0   4   0  1 | 0 2  2  0
.. .. .. .. .x     |   0  2 |   *   *   *  * 32 |   0   0   0  0   0   0   6  0 |  0  0  0  3   0   0   6  0 | 0 3  0  2
-------------------+--------+-------------------+-------------------------------+----------------------------+----------
.. o.3x. .. ..     |   3  0 |   3   0   0  0  0 | 128   *   *  *   *   *   *  * |  1  1  0  0   1   0   0  0 | 1 0  1  1
.. .. x.3o. ..     |   3  0 |   3   0   0  0  0 |   * 128   *  *   *   *   *  * |  1  0  1  0   0   1   0  0 | 1 1  1  0
.. .. x. .. x.     |   4  0 |   2   2   0  0  0 |   *   * 192  *   *   *   *  * |  0  1  1  0   0   0   1  0 | 1 1  0  1
.. .. .. o.4x.     |   4  0 |   0   4   0  0  0 |   *   *   * 48   *   *   *  * |  0  0  2  1   0   0   0  0 | 1 2  0  0
.. .. xo .. ..&#x  |   2  1 |   1   0   2  0  0 |   *   *   *  * 384   *   *  * |  0  0  0  0   1   1   1  0 | 0 1  1  1
.. .. .. ox ..&#x  |   1  2 |   0   0   2  1  0 |   *   *   *  *   * 192   *  * |  0  0  0  1   0   2   0  0 | 0 2  1  0
.. .. .. .. xx&#x  |   2  2 |   0   1   2  0  1 |   *   *   *  *   *   * 192  * |  0  0  0  1   0   0   2  0 | 0 2  0  1
.. .. .o3.x ..     |   0  3 |   0   0   0  3  0 |   *   *   *  *   *   *   * 64 |  0  0  0  0   0   2   0  1 | 0 1  2  0
-------------------+--------+-------------------+-------------------------------+----------------------------+----------
.. o.3x.3o. ..     ♦   6  0 |  12   0   0  0  0 |   4   4   0  0   0   0   0  0 | 32  *  *  *   *   *   *  * | 1 0  1  0
.. o.3x. .. x.     ♦   6  0 |   6   3   0  0  0 |   2   0   3  0   0   0   0  0 |  * 64  *  *   *   *   *  * | 1 0  0  1
.. .. x.3o.4x.     ♦  24  0 |  24  24   0  0  0 |   0   8  12  6   0   0   0  0 |  *  * 16  *   *   *   *  * | 1 1  0  0
qo .. .. ox4xx&#zx ♦   8  8 |   0   8  16  4  4 |   0   0   0  2   0   8   8  0 |  *  *  * 24   *   *   *  * | 0 2  0  0
.. oo3xo .. ..&#x  ♦   3  1 |   3   0   3  0  0 |   1   0   0  0   3   0   0  0 |  *  *  *  * 128   *   *  * | 0 0  1  1
.. .. xo3ox ..&#x  ♦   3  3 |   3   0   6  3  0 |   0   1   0  0   3   3   0  1 |  *  *  *  *   * 128   *  * | 0 1  1  0
.. .. xo .. xx&#x  ♦   4  2 |   2   2   4  0  1 |   0   0   1  0   2   0   2  0 |  *  *  *  *   *   * 192  * | 0 1  0  1
.. .o3.o3.x ..     ♦   0  4 |   0   0   0  6  0 |   0   0   0  0   0   0   0  4 |  *  *  *  *   *   *   * 16 | 0 0  2  0
-------------------+--------+-------------------+-------------------------------+----------------------------+----------
.. o.3x.3o.4x.     ♦  96  0 | 192  96   0  0  0 |  64  64  96 24   0   0   0  0 | 16 32  8  0   0   0   0  0 | 2 *  *  *
qo .. xo3ox4xx&#zx ♦  48 24 |  48  48  96 24 12 |   0  16  24 12  48  48  48  8 |  0  0  2  6   0  16  24  0 | * 8  *  *
.. oo3xo3ox ..&#x  ♦   6  4 |  12   0  12  6  0 |   4   4   0  0  12   6   0  4 |  1  0  0  0   4   4   0  1 | * * 32  *
.. oo3xo .. xx&#x  ♦   6  2 |   6   3   6  0  1 |   2   0   3  0   6   0   3  0 |  0  1  0  0   2   0   3  0 | * *  * 64
```