Acronym | pabex rat |
Name | partially biexpanded rectified triacontiditeron |
Circumradius | ... |
Lace city in approx. ASCII-art |
o3o4o x3o4o x3o4o o3o4o -- pex hex x3o4o o3x4o o3x4o x3o4o -- pexic x3o4o o3x4o o3x4o x3o4o -- pexic o3o4o x3o4o x3o4o o3o4o -- pex hex |
line esquidpy line -- pex hex esquidpy pexco esquidpy -- pexic esquidpy pexco esquidpy -- pexic line esquidpy line -- pex hex | | +-- quawros | +----------- bicyte ausodip +-------------------- quawros | |
square squobcu square -- quawros squobcu pactic squobcu -- bicyte ausodip square squobcu square -- quawros | |
Coordinates |
|
Face vector | 100, 528, 852, 504, 82 |
Confer |
|
This CRF polyteron can be obtained from rat by partial Stott expanding only within 2 perpendicular axial directions orthogonally to an equatorial co cross-section.
Incidence matrix according to Dynkin symbol
wxx4oxo oxo3oox4ooo&#zxt → both heights = 0 o..4o.. o..3o..4o.. | 4 * * ♦ 12 0 0 0 0 0 0 | 6 24 0 0 0 0 0 0 0 0 0 | 12 16 0 0 0 0 0 0 0 | 2 8 0 0 0 .o.4.o. .o.3.o.4.o. | * 48 * | 1 1 1 4 4 0 0 | 1 4 4 4 4 4 4 4 0 0 0 | 4 4 4 4 4 4 4 0 0 | 1 4 4 1 0 ..o4..o ..o3..o4..o | * * 48 | 0 0 0 0 4 2 4 | 0 0 0 0 4 2 2 8 1 8 2 | 1 0 0 2 8 4 4 4 4 | 0 2 4 2 2 ------------------------+---------+-----------------------+-----------------------------------+----------------------------+------------ oo.4oo. oo.3oo.4oo.&#x | 1 1 0 | 48 * * * * * * | 1 4 0 0 0 0 0 0 0 0 0 | 4 4 0 0 0 0 0 0 0 | 1 4 0 0 0 .x. ... ... ... ... | 0 2 0 | * 24 * * * * * | 0 0 4 0 4 0 0 0 0 0 0 | 0 0 4 4 4 0 0 0 0 | 1 0 4 1 0 ... .x. ... ... ... | 0 2 0 | * * 24 * * * * | 1 0 0 0 0 4 0 0 0 0 0 | 4 0 0 0 0 4 0 0 0 | 0 4 0 1 0 ... ... .x. ... ... | 0 2 0 | * * * 96 * * * | 0 1 1 2 0 0 1 0 0 0 0 | 1 2 2 1 0 0 2 0 0 | 1 2 2 0 0 .oo4.oo .oo3.oo4.oo&#x | 0 1 1 | * * * * 192 * * | 0 0 0 0 1 1 1 2 0 0 0 | 1 0 0 1 2 2 2 0 0 | 0 2 2 1 0 ..x ... ... ... ... | 0 0 2 | * * * * * 48 * | 0 0 0 0 2 0 0 0 1 4 0 | 0 0 0 1 4 0 0 4 2 | 0 0 2 2 2 ... ... ... ..x ... | 0 0 2 | * * * * * * 96 | 0 0 0 0 0 0 0 2 0 2 1 | 0 0 0 0 2 1 2 1 2 | 0 1 2 1 1 ------------------------+---------+-----------------------+-----------------------------------+----------------------------+------------ ... ox. ... ... ...&#x | 1 2 0 | 2 0 1 0 0 0 0 | 24 * * * * * * * * * * | 4 0 0 0 0 0 0 0 0 | 0 4 0 0 0 ... ... ox. ... ...&#x | 1 2 0 | 2 0 0 1 0 0 0 | * 96 * * * * * * * * * | 1 2 0 0 0 0 0 0 0 | 1 2 0 0 0 .x. ... .x. ... ... | 0 4 0 | 0 2 0 2 0 0 0 | * * 48 * * * * * * * * | 0 0 2 1 0 0 0 0 0 | 1 0 2 0 0 ... ... .x.3.o. ... | 0 3 0 | 0 0 0 3 0 0 0 | * * * 64 * * * * * * * | 0 1 1 0 0 0 1 0 0 | 1 1 1 0 0 .xx ... ... ... ...&#x | 0 2 2 | 0 1 0 0 2 1 0 | * * * * 96 * * * * * * | 0 0 0 1 2 0 0 0 0 | 0 0 2 1 0 ... .xo ... ... ...&#x | 0 2 1 | 0 0 1 0 2 0 0 | * * * * * 96 * * * * * | 1 0 0 0 0 2 0 0 0 | 0 2 0 1 0 ... ... .xo ... ...&#x | 0 2 1 | 0 0 0 1 2 0 0 | * * * * * * 96 * * * * | 1 0 0 1 0 0 2 0 0 | 0 2 2 0 0 ... ... ... .ox ...&#x | 0 1 2 | 0 0 0 0 2 0 1 | * * * * * * * 192 * * * | 0 0 0 0 1 1 1 0 0 | 0 1 1 1 0 ..x4..o ... ... ... | 0 0 4 | 0 0 0 0 0 4 0 | * * * * * * * * 12 * * | 0 0 0 0 0 0 0 4 0 | 0 0 0 2 2 ..x ... ... ..x ... | 0 0 4 | 0 0 0 0 0 2 2 | * * * * * * * * * 96 * | 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ... ... ..o3..x ... | 0 0 3 | 0 0 0 0 0 0 3 | * * * * * * * * * * 32 | 0 0 0 0 0 0 2 0 2 | 0 1 2 0 1 ------------------------+---------+-----------------------+-----------------------------------+----------------------------+------------ ... oxo oxo ... ...&#xt ♦ 1 4 1 | 4 0 2 2 4 0 0 | 2 2 0 0 0 2 2 0 0 0 0 | 48 * * * * * * * * | 0 2 0 0 0 ... ... ox.3oo. ...&#x ♦ 1 3 0 | 3 0 0 3 0 0 0 | 0 3 0 1 0 0 0 0 0 0 0 | * 64 * * * * * * * | 1 1 0 0 0 .x. ... .x.3.o. ... ♦ 0 6 0 | 0 3 0 6 0 0 0 | 0 0 3 2 0 0 0 0 0 0 0 | * * 32 * * * * * * | 1 0 1 0 0 .xx ... .xo ... ...&#x ♦ 0 4 2 | 0 2 0 2 4 1 0 | 0 0 1 0 2 0 2 0 0 0 0 | * * * 48 * * * * * | 0 0 2 0 0 .xx ... ... .ox ...&#x ♦ 0 2 4 | 0 1 0 0 4 2 2 | 0 0 0 0 2 0 0 2 0 1 0 | * * * * 96 * * * * | 0 0 1 1 0 ... .xo ... .ox ...&#x ♦ 0 2 2 | 0 0 1 0 4 0 1 | 0 0 0 0 0 2 0 2 0 0 0 | * * * * * 96 * * * | 0 1 0 1 0 ... ... .xo3.ox ...&#x ♦ 0 3 3 | 0 0 0 3 6 0 3 | 0 0 0 1 0 0 3 3 0 0 1 | * * * * * * 64 * * | 0 1 1 0 0 ..x4..o ... ..x ... ♦ 0 0 8 | 0 0 0 0 0 8 4 | 0 0 0 0 0 0 0 0 2 4 0 | * * * * * * * 24 * | 0 0 0 1 1 ..x ... ..o3..x ... ♦ 0 0 6 | 0 0 0 0 0 3 6 | 0 0 0 0 0 0 0 0 0 3 2 | * * * * * * * * 32 | 0 0 1 0 1 ------------------------+---------+-----------------------+-----------------------------------+----------------------------+------------ wx. ... ox.3oo.4oo.&#zx ♦ 2 12 0 | 12 6 0 24 0 0 0 | 0 24 12 16 0 0 0 0 0 0 0 | 0 16 8 0 0 0 0 0 0 | 4 * * * * ... oxo oxo3oox ...&#xt ♦ 1 6 3 | 6 0 3 6 12 0 3 | 3 6 0 2 0 6 6 6 0 0 1 | 3 2 0 0 0 3 2 0 0 | * 32 * * * .xx ... .xo3.ox ...&#x ♦ 0 6 6 | 0 3 0 6 12 3 6 | 0 0 3 2 6 0 6 6 0 3 2 | 0 0 1 3 3 0 2 0 1 | * * 32 * * .xx4.xo ... .ox4.oo&#zx ♦ 0 8 16 | 0 4 4 0 32 16 16 | 0 0 0 0 16 16 0 32 4 16 0 | 0 0 0 0 16 16 0 4 0 | * * * 6 * ..x4..o ..o3..x ... ♦ 0 0 12 | 0 0 0 0 0 12 12 | 0 0 0 0 0 0 0 0 3 12 4 | 0 0 0 0 0 0 0 3 4 | * * * * 8
© 2004-2024 | top of page |