Acronym pabex rat
Name partially biexpanded rectified triacontiditeron
Circumradius ...
Lace city
in approx. ASCII-art
o3o4o   x3o4o     x3o4o   o3o4o		-- pex hex
                               
                               
                               
                               
x3o4o   o3x4o     o3x4o   x3o4o		-- pexic
                               
                               
                               
                               
                               
                               
x3o4o   o3x4o     o3x4o   x3o4o		-- pexic
                               
                               
                               
                               
o3o4o   x3o4o     x3o4o   o3o4o		-- pex hex
 line   esquidpy  line 		-- pex hex
                       
                       
                       
                       
esquidpy pexco esquidpy		-- pexic
                       
                       
                       
                       
                       
                       
esquidpy pexco esquidpy		-- pexic
                       
                       
                       
                       
 line   esquidpy  line 		-- pex hex

  |        |        +-- quawros
  |        +----------- bicyte ausodip
  +-------------------- quawros
square   squobcu  square 		-- quawros
                         
                         
                         
                         
squobcu  pactic   squobcu		-- bicyte ausodip
                         
                         
                         
                         
square   squobcu  square 		-- quawros
Coordinates
  • (0, 0, 0; (1+sqrt(2))/2, (1+sqrt(2))/2)   & all changes of sign
  • (1/sqrt(2), 0, 0; 1/2, (1+sqrt(2))/2)     & all permutations within each subset, all changes of sign
  • (1/sqrt(2), 1/sqrt(2), 0; 1/2, 1/2)       & all permutations within each subset, all changes of sign
Face vector 100, 528, 852, 504, 82
Confer
uniform relative:
rat   span  
general polytopal classes:
partial Stott expansions  

This CRF polyteron can be obtained from rat by partial Stott expanding only within 2 perpendicular axial directions orthogonally to an equatorial co cross-section.


Incidence matrix according to Dynkin symbol

wxx4oxo oxo3oox4ooo&#zxt   → both heights = 0

o..4o.. o..3o..4o..     | 4  *  *  12  0  0  0   0  0  0 |  6 24  0  0  0  0  0   0  0  0  0 | 12 16  0  0  0  0  0  0  0 | 2  8  0 0 0
.o.4.o. .o.3.o.4.o.     | * 48  * |  1  1  1  4   4  0  0 |  1  4  4  4  4  4  4   4  0  0  0 |  4  4  4  4  4  4  4  0  0 | 1  4  4 1 0
..o4..o ..o3..o4..o     | *  * 48 |  0  0  0  0   4  2  4 |  0  0  0  0  4  2  2   8  1  8  2 |  1  0  0  2  8  4  4  4  4 | 0  2  4 2 2
------------------------+---------+-----------------------+-----------------------------------+----------------------------+------------
oo.4oo. oo.3oo.4oo.&#x  | 1  1  0 | 48  *  *  *   *  *  * |  1  4  0  0  0  0  0   0  0  0  0 |  4  4  0  0  0  0  0  0  0 | 1  4  0 0 0
.x. ... ... ... ...     | 0  2  0 |  * 24  *  *   *  *  * |  0  0  4  0  4  0  0   0  0  0  0 |  0  0  4  4  4  0  0  0  0 | 1  0  4 1 0
... .x. ... ... ...     | 0  2  0 |  *  * 24  *   *  *  * |  1  0  0  0  0  4  0   0  0  0  0 |  4  0  0  0  0  4  0  0  0 | 0  4  0 1 0
... ... .x. ... ...     | 0  2  0 |  *  *  * 96   *  *  * |  0  1  1  2  0  0  1   0  0  0  0 |  1  2  2  1  0  0  2  0  0 | 1  2  2 0 0
.oo4.oo .oo3.oo4.oo&#x  | 0  1  1 |  *  *  *  * 192  *  * |  0  0  0  0  1  1  1   2  0  0  0 |  1  0  0  1  2  2  2  0  0 | 0  2  2 1 0
..x ... ... ... ...     | 0  0  2 |  *  *  *  *   * 48  * |  0  0  0  0  2  0  0   0  1  4  0 |  0  0  0  1  4  0  0  4  2 | 0  0  2 2 2
... ... ... ..x ...     | 0  0  2 |  *  *  *  *   *  * 96 |  0  0  0  0  0  0  0   2  0  2  1 |  0  0  0  0  2  1  2  1  2 | 0  1  2 1 1
------------------------+---------+-----------------------+-----------------------------------+----------------------------+------------
... ox. ... ... ...&#x  | 1  2  0 |  2  0  1  0   0  0  0 | 24  *  *  *  *  *  *   *  *  *  * |  4  0  0  0  0  0  0  0  0 | 0  4  0 0 0
... ... ox. ... ...&#x  | 1  2  0 |  2  0  0  1   0  0  0 |  * 96  *  *  *  *  *   *  *  *  * |  1  2  0  0  0  0  0  0  0 | 1  2  0 0 0
.x. ... .x. ... ...     | 0  4  0 |  0  2  0  2   0  0  0 |  *  * 48  *  *  *  *   *  *  *  * |  0  0  2  1  0  0  0  0  0 | 1  0  2 0 0
... ... .x.3.o. ...     | 0  3  0 |  0  0  0  3   0  0  0 |  *  *  * 64  *  *  *   *  *  *  * |  0  1  1  0  0  0  1  0  0 | 1  1  1 0 0
.xx ... ... ... ...&#x  | 0  2  2 |  0  1  0  0   2  1  0 |  *  *  *  * 96  *  *   *  *  *  * |  0  0  0  1  2  0  0  0  0 | 0  0  2 1 0
... .xo ... ... ...&#x  | 0  2  1 |  0  0  1  0   2  0  0 |  *  *  *  *  * 96  *   *  *  *  * |  1  0  0  0  0  2  0  0  0 | 0  2  0 1 0
... ... .xo ... ...&#x  | 0  2  1 |  0  0  0  1   2  0  0 |  *  *  *  *  *  * 96   *  *  *  * |  1  0  0  1  0  0  2  0  0 | 0  2  2 0 0
... ... ... .ox ...&#x  | 0  1  2 |  0  0  0  0   2  0  1 |  *  *  *  *  *  *  * 192  *  *  * |  0  0  0  0  1  1  1  0  0 | 0  1  1 1 0
..x4..o ... ... ...     | 0  0  4 |  0  0  0  0   0  4  0 |  *  *  *  *  *  *  *   * 12  *  * |  0  0  0  0  0  0  0  4  0 | 0  0  0 2 2
..x ... ... ..x ...     | 0  0  4 |  0  0  0  0   0  2  2 |  *  *  *  *  *  *  *   *  * 96  * |  0  0  0  0  1  0  0  1  1 | 0  0  1 1 1
... ... ..o3..x ...     | 0  0  3 |  0  0  0  0   0  0  3 |  *  *  *  *  *  *  *   *  *  * 32 |  0  0  0  0  0  0  2  0  2 | 0  1  2 0 1
------------------------+---------+-----------------------+-----------------------------------+----------------------------+------------
... oxo oxo ... ...&#xt  1  4  1 |  4  0  2  2   4  0  0 |  2  2  0  0  0  2  2   0  0  0  0 | 48  *  *  *  *  *  *  *  * | 0  2  0 0 0
... ... ox.3oo. ...&#x   1  3  0 |  3  0  0  3   0  0  0 |  0  3  0  1  0  0  0   0  0  0  0 |  * 64  *  *  *  *  *  *  * | 1  1  0 0 0
.x. ... .x.3.o. ...      0  6  0 |  0  3  0  6   0  0  0 |  0  0  3  2  0  0  0   0  0  0  0 |  *  * 32  *  *  *  *  *  * | 1  0  1 0 0
.xx ... .xo ... ...&#x   0  4  2 |  0  2  0  2   4  1  0 |  0  0  1  0  2  0  2   0  0  0  0 |  *  *  * 48  *  *  *  *  * | 0  0  2 0 0
.xx ... ... .ox ...&#x   0  2  4 |  0  1  0  0   4  2  2 |  0  0  0  0  2  0  0   2  0  1  0 |  *  *  *  * 96  *  *  *  * | 0  0  1 1 0
... .xo ... .ox ...&#x   0  2  2 |  0  0  1  0   4  0  1 |  0  0  0  0  0  2  0   2  0  0  0 |  *  *  *  *  * 96  *  *  * | 0  1  0 1 0
... ... .xo3.ox ...&#x   0  3  3 |  0  0  0  3   6  0  3 |  0  0  0  1  0  0  3   3  0  0  1 |  *  *  *  *  *  * 64  *  * | 0  1  1 0 0
..x4..o ... ..x ...      0  0  8 |  0  0  0  0   0  8  4 |  0  0  0  0  0  0  0   0  2  4  0 |  *  *  *  *  *  *  * 24  * | 0  0  0 1 1
..x ... ..o3..x ...      0  0  6 |  0  0  0  0   0  3  6 |  0  0  0  0  0  0  0   0  0  3  2 |  *  *  *  *  *  *  *  * 32 | 0  0  1 0 1
------------------------+---------+-----------------------+-----------------------------------+----------------------------+------------
wx. ... ox.3oo.4oo.&#zx  2 12  0 | 12  6  0 24   0  0  0 |  0 24 12 16  0  0  0   0  0  0  0 |  0 16  8  0  0  0  0  0  0 | 4  *  * * *
... oxo oxo3oox ...&#xt  1  6  3 |  6  0  3  6  12  0  3 |  3  6  0  2  0  6  6   6  0  0  1 |  3  2  0  0  0  3  2  0  0 | * 32  * * *
.xx ... .xo3.ox ...&#x   0  6  6 |  0  3  0  6  12  3  6 |  0  0  3  2  6  0  6   6  0  3  2 |  0  0  1  3  3  0  2  0  1 | *  * 32 * *
.xx4.xo ... .ox4.oo&#zx  0  8 16 |  0  4  4  0  32 16 16 |  0  0  0  0 16 16  0  32  4 16  0 |  0  0  0  0 16 16  0  4  0 | *  *  * 6 *
..x4..o ..o3..x ...      0  0 12 |  0  0  0  0   0 12 12 |  0  0  0  0  0  0  0   0  3 12  4 |  0  0  0  0  0  0  0  3  4 | *  *  * * 8

© 2004-2025
top of page