Acronym tidagrid, tid || grid, K-4.173
Name truncated dodecahedron atop great rhombicosidodecahedron,
truncated-dodecahedral cap of prismatorhombated hexacosichoron
Segmentochoron display
Circumradius sqrt[48+21 sqrt(5)] = 9.744610
General of army (is itself convex)
Colonel of regiment (is itself locally convex)
Dihedral angles
  • at {3} between tricu and trip:   arccos(-sqrt[9+3 sqrt(5)]/4) = 172.238756°
  • at {4} between dip and trip:   arccos(-sqrt[(10+2 sqrt(5))/15]) = 169.187683°
  • at {4} between dip and tricu:   arccos(-sqrt[(5+2 sqrt(5))/10]) = 166.717474°
  • at {10} between dip and tid:   162°
  • at {3} between tid and tricu:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244°
  • at {6} between grid and tricu:   arccos(sqrt[7+3 sqrt(5)]/4) = 22.238756°
  • at {4} between grid and trip:   arccos(sqrt[(3+sqrt(5))/6]) = 20.905157°
  • at {10} between dip and grid:   18°
Confer
more general:
uniform relative:
prix  
general polytopal classes:
segmentochora  

Incidence matrix according to Dynkin symbol

ox3xx5xx&#x   → height = (sqrt(5)-1)/4 = 0.309017
(tid || grid)


o.3o.5o.    | 60   * |  2  1   2  0  0  0 |  1  2  1  2  2  0  0  0 | 1  1  1  2 0
.o3.o5.o    |  * 120 |  0  0   1  1  1  1 |  0  0  1  1  1  1  1  1 | 0  1  1  1 1
------------+--------+--------------------+-------------------------+-------------
.. x. ..    |  2   0 | 60  *   *  *  *  * |  1  1  0  1  0  0  0  0 | 1  1  0  1 0
.. .. x.    |  2   0 |  * 30   *  *  *  * |  0  2  0  0  2  0  0  0 | 1  0  1  2 0
oo3oo5oo&#x |  1   1 |  *  * 120  *  *  * |  0  0  1  1  1  0  0  0 | 0  1  1  1 0
.x .. ..    |  0   2 |  *  *   * 60  *  * |  0  0  1  0  0  1  1  0 | 0  1  1  0 1
.. .x ..    |  0   2 |  *  *   *  * 60  * |  0  0  0  1  0  1  0  1 | 0  1  0  1 1
.. .. .x    |  0   2 |  *  *   *  *  * 60 |  0  0  0  0  1  0  1  1 | 0  0  1  1 1
------------+--------+--------------------+-------------------------+-------------
o.3x. ..    |  3   0 |  3  0   0  0  0  0 | 20  *  *  *  *  *  *  * | 1  1  0  0 0
.. x.5x.    | 10   0 |  5  5   0  0  0  0 |  * 12  *  *  *  *  *  * | 1  0  0  1 0
ox .. ..&#x |  1   2 |  0  0   2  1  0  0 |  *  * 60  *  *  *  *  * | 0  1  1  0 0
.. xx ..&#x |  2   2 |  1  0   2  0  1  0 |  *  *  * 60  *  *  *  * | 0  1  0  1 0
.. .. xx&#x |  2   2 |  0  1   2  0  0  1 |  *  *  *  * 60  *  *  * | 0  0  1  1 0
.x3.x ..    |  0   6 |  0  0   0  3  3  0 |  *  *  *  *  * 20  *  * | 0  1  0  0 1
.x .. .x    |  0   4 |  0  0   0  2  0  2 |  *  *  *  *  *  * 30  * | 0  0  1  0 1
.. .x5.x    |  0  10 |  0  0   0  0  5  5 |  *  *  *  *  *  *  * 12 | 0  0  0  1 1
------------+--------+--------------------+-------------------------+-------------
o.3x.5x.     60   0 | 60 30   0  0  0  0 | 20 12  0  0  0  0  0  0 | 1  *  *  * *
ox3xx ..&#x   3   6 |  3  0   6  3  3  0 |  1  0  3  3  0  1  0  0 | * 20  *  * *
ox .. xx&#x   2   4 |  0  1   4  2  0  2 |  0  0  2  0  2  0  1  0 | *  * 30  * *
.. xx5xx&#x  10  10 |  5  5  10  0  5  5 |  0  1  0  5  5  0  0  1 | *  *  * 12 *
.x3.x5.x      0 120 |  0  0   0 60 60 60 |  0  0  0  0  0 20 30 12 | *  *  *  * 1

© 2004-2018
top of page