Acronym gaquidpothip
Name great-quasidisprismatotesseractihexadecachoric prism,
great-quasiprismated-tesseract prism
Circumradius sqrt[33-12 sqrt(2)]/2 = 2.001839

As abstract polyteron gaquidpothip is isomorphic to gidpithip, thereby replacing the octagrams by octagons, resp. replacing quitco by girco and stop by op, resp. replacing gaquidpoth by gidpith, quitcope by gircope, and sistodip by sodip.


Incidence matrix according to Dynkin symbol

x x3x3x4/3x

. . . .   . | 768 |   1   1   1   1   1 |   1   1   1   1   1   1   1   1   1  1 |  1  1  1  1  1  1  1  1  1  1 |  1  1  1 1 1
------------+-----+---------------------+----------------------------------------+-------------------------------+-------------
x . . .   . |   2 | 384   *   *   *   * |   1   1   1   1   0   0   0   0   0  0 |  1  1  1  1  1  1  0  0  0  0 |  1  1  1 1 0
. x . .   . |   2 |   * 384   *   *   * |   1   0   0   0   1   1   1   0   0  0 |  1  1  1  0  0  0  1  1  1  0 |  1  1  1 0 1
. . x .   . |   2 |   *   * 384   *   * |   0   1   0   0   1   0   0   1   1  0 |  1  0  0  1  1  0  1  1  0  1 |  1  1  0 1 1
. . . x   . |   2 |   *   *   * 384   * |   0   0   1   0   0   1   0   1   0  1 |  0  1  0  1  0  1  1  0  1  1 |  1  0  1 1 1
. . . .   x |   2 |   *   *   *   * 384 |   0   0   0   1   0   0   1   0   1  1 |  0  0  1  0  1  1  0  1  1  1 |  0  1  1 1 1
------------+-----+---------------------+----------------------------------------+-------------------------------+-------------
x x . .   . |   4 |   2   2   0   0   0 | 192   *   *   *   *   *   *   *   *  * |  1  1  1  0  0  0  0  0  0  0 |  1  1  1 0 0
x . x .   . |   4 |   2   0   2   0   0 |   * 192   *   *   *   *   *   *   *  * |  1  0  0  1  1  0  0  0  0  0 |  1  1  0 1 0
x . . x   . |   4 |   2   0   0   2   0 |   *   * 192   *   *   *   *   *   *  * |  0  1  0  1  0  1  0  0  0  0 |  1  0  1 1 0
x . . .   x |   4 |   2   0   0   0   2 |   *   *   * 192   *   *   *   *   *  * |  0  0  1  0  1  1  0  0  0  0 |  0  1  1 1 0
. x3x .   . |   6 |   0   3   3   0   0 |   *   *   *   * 128   *   *   *   *  * |  1  0  0  0  0  0  1  1  0  0 |  1  1  0 0 1
. x . x   . |   4 |   0   2   0   2   0 |   *   *   *   *   * 192   *   *   *  * |  0  1  0  0  0  0  1  0  1  0 |  1  0  1 0 1
. x . .   x |   4 |   0   2   0   0   2 |   *   *   *   *   *   * 192   *   *  * |  0  0  1  0  0  0  0  1  1  0 |  0  1  1 0 1
. . x3x   . |   6 |   0   0   3   3   0 |   *   *   *   *   *   *   * 128   *  * |  0  0  0  1  0  0  1  0  0  1 |  1  0  0 1 1
. . x .   x |   4 |   0   0   2   0   2 |   *   *   *   *   *   *   *   * 192  * |  0  0  0  0  1  0  0  1  0  1 |  0  1  0 1 1
. . . x4/3x |   8 |   0   0   0   4   4 |   *   *   *   *   *   *   *   *   * 96 |  0  0  0  0  0  1  0  0  1  1 |  0  0  1 1 1
------------+-----+---------------------+----------------------------------------+-------------------------------+-------------
x x3x .   .   12 |   6   6   6   0   0 |   3   3   0   0   2   0   0   0   0  0 | 64  *  *  *  *  *  *  *  *  * |  1  1  0 0 0
x x . x   .    8 |   4   4   0   4   0 |   2   0   2   0   0   2   0   0   0  0 |  * 96  *  *  *  *  *  *  *  * |  1  0  1 0 0
x x . .   x    8 |   4   4   0   0   4 |   2   0   0   2   0   0   2   0   0  0 |  *  * 96  *  *  *  *  *  *  * |  0  1  1 0 0
x . x3x   .   12 |   6   0   6   6   0 |   0   3   3   0   0   0   0   2   0  0 |  *  *  * 64  *  *  *  *  *  * |  1  0  0 1 0
x . x .   x    8 |   4   0   4   0   4 |   0   2   0   2   0   0   0   0   2  0 |  *  *  *  * 96  *  *  *  *  * |  0  1  0 1 0
x . . x4/3x   16 |   8   0   0   8   8 |   0   0   4   4   0   0   0   0   0  2 |  *  *  *  *  * 48  *  *  *  * |  0  0  1 1 0
. x3x3x   .   24 |   0  12  12  12   0 |   0   0   0   0   4   6   0   4   0  0 |  *  *  *  *  *  * 32  *  *  * |  1  0  0 0 1
. x3x .   x   12 |   0   6   6   0   6 |   0   0   0   0   2   0   3   0   3  0 |  *  *  *  *  *  *  * 64  *  * |  0  1  0 0 1
. x . x4/3x   16 |   0   8   0   8   8 |   0   0   0   0   0   4   4   0   0  2 |  *  *  *  *  *  *  *  * 48  * |  0  0  1 0 1
. . x3x4/3x   48 |   0   0  24  24  24 |   0   0   0   0   0   0   0   8  12  6 |  *  *  *  *  *  *  *  *  * 16 |  0  0  0 1 1
------------+-----+---------------------+----------------------------------------+-------------------------------+-------------
x x3x3x   .   48 |  24  24  24  24   0 |  12  12  12   0   8  12   0   8   0  0 |  4  6  0  4  0  0  2  0  0  0 | 16  *  * * *
x x3x .   x   24 |  12  12  12   0  12 |   6   6   0   6   4   0   6   0   6  0 |  2  0  3  0  3  0  0  2  0  0 |  * 32  * * *
x x . x4/3x   32 |  16  16   0  16  16 |   8   0   8   8   0   8   8   0   0  4 |  0  4  4  0  0  2  0  0  2  0 |  *  * 24 * *
x . x3x4/3x   96 |  48   0  48  48  48 |   0  24  24  24   0   0   0  16  24 12 |  0  0  0  8 12  6  0  0  0  2 |  *  *  * 8 *
. x3x3x4/3x  384 |   0 192 192 192 192 |   0   0   0   0  64  96  96  64  96 48 |  0  0  0  0  0  0 16 32 24  8 |  *  *  * * 2

© 2004-2019
top of page