Acronym | gaquidpothip |
Name |
great-quasidisprismatotesseractihexadecachoric prism, great-quasiprismated-tesseract prism |
Circumradius | sqrt[33-12 sqrt(2)]/2 = 2.001839 |
Face vector | 768, 1920, 1696, 624, 82 |
Confer |
|
As abstract polyteron gaquidpothip is isomorphic to gidpithip, thereby replacing the octagrams by octagons, resp. replacing quitco by girco and stop by op, resp. replacing gaquidpoth by gidpith, quitcope by gircope, and sistodip by sodip.
Incidence matrix according to Dynkin symbol
x x3x3x4/3x . . . . . | 768 | 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 ------------+-----+---------------------+----------------------------------------+-------------------------------+------------- x . . . . | 2 | 384 * * * * | 1 1 1 1 0 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 | 1 1 1 1 0 . x . . . | 2 | * 384 * * * | 1 0 0 0 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 0 | 1 1 1 0 1 . . x . . | 2 | * * 384 * * | 0 1 0 0 1 0 0 1 1 0 | 1 0 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . x . | 2 | * * * 384 * | 0 0 1 0 0 1 0 1 0 1 | 0 1 0 1 0 1 1 0 1 1 | 1 0 1 1 1 . . . . x | 2 | * * * * 384 | 0 0 0 1 0 0 1 0 1 1 | 0 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 ------------+-----+---------------------+----------------------------------------+-------------------------------+------------- x x . . . | 4 | 2 2 0 0 0 | 192 * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 0 2 0 0 | * 192 * * * * * * * * | 1 0 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 0 2 0 | * * 192 * * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 0 2 | * * * 192 * * * * * * | 0 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . x3x . . | 6 | 0 3 3 0 0 | * * * * 128 * * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . x . | 4 | 0 2 0 2 0 | * * * * * 192 * * * * | 0 1 0 0 0 0 1 0 1 0 | 1 0 1 0 1 . x . . x | 4 | 0 2 0 0 2 | * * * * * * 192 * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x3x . | 6 | 0 0 3 3 0 | * * * * * * * 128 * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . x | 4 | 0 0 2 0 2 | * * * * * * * * 192 * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . x4/3x | 8 | 0 0 0 4 4 | * * * * * * * * * 96 | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ------------+-----+---------------------+----------------------------------------+-------------------------------+------------- x x3x . . ♦ 12 | 6 6 6 0 0 | 3 3 0 0 2 0 0 0 0 0 | 64 * * * * * * * * * | 1 1 0 0 0 x x . x . ♦ 8 | 4 4 0 4 0 | 2 0 2 0 0 2 0 0 0 0 | * 96 * * * * * * * * | 1 0 1 0 0 x x . . x ♦ 8 | 4 4 0 0 4 | 2 0 0 2 0 0 2 0 0 0 | * * 96 * * * * * * * | 0 1 1 0 0 x . x3x . ♦ 12 | 6 0 6 6 0 | 0 3 3 0 0 0 0 2 0 0 | * * * 64 * * * * * * | 1 0 0 1 0 x . x . x ♦ 8 | 4 0 4 0 4 | 0 2 0 2 0 0 0 0 2 0 | * * * * 96 * * * * * | 0 1 0 1 0 x . . x4/3x ♦ 16 | 8 0 0 8 8 | 0 0 4 4 0 0 0 0 0 2 | * * * * * 48 * * * * | 0 0 1 1 0 . x3x3x . ♦ 24 | 0 12 12 12 0 | 0 0 0 0 4 6 0 4 0 0 | * * * * * * 32 * * * | 1 0 0 0 1 . x3x . x ♦ 12 | 0 6 6 0 6 | 0 0 0 0 2 0 3 0 3 0 | * * * * * * * 64 * * | 0 1 0 0 1 . x . x4/3x ♦ 16 | 0 8 0 8 8 | 0 0 0 0 0 4 4 0 0 2 | * * * * * * * * 48 * | 0 0 1 0 1 . . x3x4/3x ♦ 48 | 0 0 24 24 24 | 0 0 0 0 0 0 0 8 12 6 | * * * * * * * * * 16 | 0 0 0 1 1 ------------+-----+---------------------+----------------------------------------+-------------------------------+------------- x x3x3x . ♦ 48 | 24 24 24 24 0 | 12 12 12 0 8 12 0 8 0 0 | 4 6 0 4 0 0 2 0 0 0 | 16 * * * * x x3x . x ♦ 24 | 12 12 12 0 12 | 6 6 0 6 4 0 6 0 6 0 | 2 0 3 0 3 0 0 2 0 0 | * 32 * * * x x . x4/3x ♦ 32 | 16 16 0 16 16 | 8 0 8 8 0 8 8 0 0 4 | 0 4 4 0 0 2 0 0 2 0 | * * 24 * * x . x3x4/3x ♦ 96 | 48 0 48 48 48 | 0 24 24 24 0 0 0 16 24 12 | 0 0 0 8 12 6 0 0 0 2 | * * * 8 * . x3x3x4/3x ♦ 384 | 0 192 192 192 192 | 0 0 0 0 64 96 96 64 96 48 | 0 0 0 0 0 0 16 32 24 8 | * * * * 2
© 2004-2025 | top of page |