Acronym | gibcotdin | |||||||||||||||||||||||||||
Name | great biprismatocellitriacontadiadispenteract | |||||||||||||||||||||||||||
Field of sections |
© | |||||||||||||||||||||||||||
Circumradius | sqrt[33-12 sqrt(2)]/2 = 2.001839 | |||||||||||||||||||||||||||
Vertex figure |
© | |||||||||||||||||||||||||||
Coordinates | ((3 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2) & all permutations, all changes of sign | |||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| |||||||||||||||||||||||||||
Face vector | 1920, 5760, 5440, 1840, 172 | |||||||||||||||||||||||||||
Confer |
| |||||||||||||||||||||||||||
External links |
As abstract polytope gibcotdin is isomorphic to sibcotdin, thereby replacing octagrams by octagons, resp. stop by op, quitco by girco, and gocco by socco, resp. gaquidpoth by gidpith, goccope by soccope, and gichado by sichado.
Incidence matrix according to Dynkin symbol
x3x3x3o4x4/3*c . . . . . | 1920 | 1 1 2 2 | 1 2 2 2 2 1 2 1 | 2 2 1 2 1 1 2 1 1 | 1 2 1 1 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x . . . . | 2 | 960 * * * | 1 2 2 0 0 0 0 0 | 2 2 1 2 1 0 0 0 0 | 1 2 1 1 0 . x . . . | 2 | * 960 * * | 1 0 0 2 2 0 0 0 | 2 2 0 0 0 1 2 1 0 | 1 2 1 0 1 . . x . . | 2 | * * 1920 * | 0 1 0 1 0 1 1 0 | 1 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . . x | 2 | * * * 1920 | 0 0 1 0 1 0 1 1 | 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3x . . . | 6 | 3 3 0 0 | 320 * * * * * * * | 2 2 0 0 0 0 0 0 0 | 1 2 1 0 0 x . x . . | 4 | 2 0 2 0 | * 960 * * * * * * | 1 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . . x | 4 | 2 0 0 2 | * * 960 * * * * * | 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . x3x . . | 6 | 0 3 3 0 | * * * 640 * * * * | 1 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . . x | 4 | 0 2 0 2 | * * * * 960 * * * | 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x3o . | 3 | 0 0 3 0 | * * * * * 640 * * | 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . x4/3*c | 8 | 0 0 4 4 | * * * * * * 480 * | 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . o4x | 4 | 0 0 0 4 | * * * * * * * 480 | 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3x3x . . ♦ 24 | 12 12 12 0 | 4 6 0 4 0 0 0 0 | 160 * * * * * * * * | 1 1 0 0 0 x3x . . x ♦ 12 | 6 6 0 6 | 2 0 3 0 3 0 0 0 | * 320 * * * * * * * | 0 1 1 0 0 x . x3o . ♦ 6 | 3 0 6 0 | 0 3 0 0 0 2 0 0 | * * 320 * * * * * * | 1 0 0 1 0 x . x . x4/3*c ♦ 16 | 8 0 8 8 | 0 4 4 0 0 0 2 0 | * * * 240 * * * * * | 0 1 0 1 0 x . . o4x ♦ 8 | 4 0 0 8 | 0 0 4 0 0 0 0 2 | * * * * 240 * * * * | 0 0 1 1 0 . x3x3o . ♦ 12 | 0 6 12 0 | 0 0 0 4 0 4 0 0 | * * * * * 160 * * * | 1 0 0 0 1 . x3x . x4/3*c ♦ 48 | 0 24 24 24 | 0 0 0 8 12 0 6 0 | * * * * * * 80 * * | 0 1 0 0 1 . x . o4x ♦ 8 | 0 4 0 8 | 0 0 0 0 4 0 0 2 | * * * * * * * 240 * | 0 0 1 0 1 . . x3o4x4/3*c ♦ 24 | 0 0 24 24 | 0 0 0 0 0 8 6 6 | * * * * * * * * 80 | 0 0 0 1 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3x3x3o . ♦ 60 | 30 30 60 0 | 10 30 0 20 0 20 0 0 | 5 0 10 0 0 5 0 0 0 | 32 * * * * x3x3x . x4/3*c ♦ 384 | 192 192 192 192 | 64 96 96 64 96 0 48 0 | 16 32 0 24 0 0 8 0 0 | * 10 * * * x3x . o4x ♦ 24 | 12 12 0 24 | 4 0 12 0 12 0 0 6 | 0 4 0 0 3 0 0 3 0 | * * 80 * * x . x3o4x4/3*c ♦ 48 | 24 0 48 48 | 0 24 24 0 0 16 12 12 | 0 0 8 6 6 0 0 0 2 | * * * 40 * . x3x3o4x4/3*c ♦ 192 | 0 96 192 192 | 0 0 0 64 96 64 48 48 | 0 0 0 0 0 16 8 24 8 | * * * * 10
© 2004-2025 | top of page |