Acronym gibcotdin
Name great biprismatocellitriacontadiadispenteract
Field of sections
 ©
Circumradius sqrt[33-12 sqrt(2)]/2 = 2.001839
Vertex figure
 ©
Coordinates ((3 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – uniform polyteral members:
by cells: gaquidpoth gichado goccope grip paqrit quercope shiddip tope
gibcotdin 1010403200800
quicgrat 0003210408080
& others)
External
links
hedrondude  

As abstract polytope gibcotdin is isomorphic to sibcotdin, thereby replacing octagrams by octagons, resp. stop by op, quitco by girco, and gocco by socco, resp. gaquidpoth by gidpith, goccope by soccope, and gichado by sichado.


Incidence matrix according to Dynkin symbol

x3x3x3o4x4/3*c

. . . . .      | 1920 |   1   1    2    2 |   1   2   2   2   2   1   2   1 |   2   2   1   2   1   1  2   1  1 |  1  2  1  1  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x . . . .      |    2 | 960   *    *    * |   1   2   2   0   0   0   0   0 |   2   2   1   2   1   0  0   0  0 |  1  2  1  1  0
. x . . .      |    2 |   * 960    *    * |   1   0   0   2   2   0   0   0 |   2   2   0   0   0   1  2   1  0 |  1  2  1  0  1
. . x . .      |    2 |   *   * 1920    * |   0   1   0   1   0   1   1   0 |   1   0   1   1   0   1  1   0  1 |  1  1  0  1  1
. . . . x      |    2 |   *   *    * 1920 |   0   0   1   0   1   0   1   1 |   0   1   0   1   1   0  1   1  1 |  0  1  1  1  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3x . . .      |    6 |   3   3    0    0 | 320   *   *   *   *   *   *   * |   2   2   0   0   0   0  0   0  0 |  1  2  1  0  0
x . x . .      |    4 |   2   0    2    0 |   * 960   *   *   *   *   *   * |   1   0   1   1   0   0  0   0  0 |  1  1  0  1  0
x . . . x      |    4 |   2   0    0    2 |   *   * 960   *   *   *   *   * |   0   1   0   1   1   0  0   0  0 |  0  1  1  1  0
. x3x . .      |    6 |   0   3    3    0 |   *   *   * 640   *   *   *   * |   1   0   0   0   0   1  1   0  0 |  1  1  0  0  1
. x . . x      |    4 |   0   2    0    2 |   *   *   *   * 960   *   *   * |   0   1   0   0   0   0  1   1  0 |  0  1  1  0  1
. . x3o .      |    3 |   0   0    3    0 |   *   *   *   *   * 640   *   * |   0   0   1   0   0   1  0   0  1 |  1  0  0  1  1
. . x . x4/3*c |    8 |   0   0    4    4 |   *   *   *   *   *   * 480   * |   0   0   0   1   0   0  1   0  1 |  0  1  0  1  1
. . . o4x      |    4 |   0   0    0    4 |   *   *   *   *   *   *   * 480 |   0   0   0   0   1   0  0   1  1 |  0  0  1  1  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3x3x . .         24 |  12  12   12    0 |   4   6   0   4   0   0   0   0 | 160   *   *   *   *   *  *   *  * |  1  1  0  0  0
x3x . . x         12 |   6   6    0    6 |   2   0   3   0   3   0   0   0 |   * 320   *   *   *   *  *   *  * |  0  1  1  0  0
x . x3o .          6 |   3   0    6    0 |   0   3   0   0   0   2   0   0 |   *   * 320   *   *   *  *   *  * |  1  0  0  1  0
x . x . x4/3*c    16 |   8   0    8    8 |   0   4   4   0   0   0   2   0 |   *   *   * 240   *   *  *   *  * |  0  1  0  1  0
x . . o4x          8 |   4   0    0    8 |   0   0   4   0   0   0   0   2 |   *   *   *   * 240   *  *   *  * |  0  0  1  1  0
. x3x3o .         12 |   0   6   12    0 |   0   0   0   4   0   4   0   0 |   *   *   *   *   * 160  *   *  * |  1  0  0  0  1
. x3x . x4/3*c    48 |   0  24   24   24 |   0   0   0   8  12   0   6   0 |   *   *   *   *   *   * 80   *  * |  0  1  0  0  1
. x . o4x          8 |   0   4    0    8 |   0   0   0   0   4   0   0   2 |   *   *   *   *   *   *  * 240  * |  0  0  1  0  1
. . x3o4x4/3*c    24 |   0   0   24   24 |   0   0   0   0   0   8   6   6 |   *   *   *   *   *   *  *   * 80 |  0  0  0  1  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3x3x3o .         60 |  30  30   60    0 |  10  30   0  20   0  20   0   0 |   5   0  10   0   0   5  0   0  0 | 32  *  *  *  *
x3x3x . x4/3*c   384 | 192 192  192  192 |  64  96  96  64  96   0  48   0 |  16  32   0  24   0   0  8   0  0 |  * 10  *  *  *
x3x . o4x         24 |  12  12    0   24 |   4   0  12   0  12   0   0   6 |   0   4   0   0   3   0  0   3  0 |  *  * 80  *  *
x . x3o4x4/3*c    48 |  24   0   48   48 |   0  24  24   0   0  16  12  12 |   0   0   8   6   6   0  0   0  2 |  *  *  * 40  *
. x3x3o4x4/3*c   192 |   0  96  192  192 |   0   0   0  64  96  64  48  48 |   0   0   0   0   0  16  8  24  8 |  *  *  *  * 10

© 2004-2019
top of page