Acronym gibcotdin
Field of sections
` ©`
Vertex figure
` ©`
Coordinates ((3 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – uniform polyteral members:
 by cells: gaquidpoth gichado goccope grip paqrit quercope shiddip tope gibcotdin 10 10 40 32 0 0 80 0 quicgrat 0 0 0 32 10 40 80 80
& others)
External

As abstract polytope gibcotdin is isomorphic to sibcotdin, thereby replacing octagrams by octagons, resp. stop by op, quitco by girco, and gocco by socco, resp. gaquidpoth by gidpith, goccope by soccope, and gichado by sichado.

Incidence matrix according to Dynkin symbol

```x3x3x3o4x4/3*c

. . . . .      | 1920 |   1   1    2    2 |   1   2   2   2   2   1   2   1 |   2   2   1   2   1   1  2   1  1 |  1  2  1  1  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x . . . .      |    2 | 960   *    *    * |   1   2   2   0   0   0   0   0 |   2   2   1   2   1   0  0   0  0 |  1  2  1  1  0
. x . . .      |    2 |   * 960    *    * |   1   0   0   2   2   0   0   0 |   2   2   0   0   0   1  2   1  0 |  1  2  1  0  1
. . x . .      |    2 |   *   * 1920    * |   0   1   0   1   0   1   1   0 |   1   0   1   1   0   1  1   0  1 |  1  1  0  1  1
. . . . x      |    2 |   *   *    * 1920 |   0   0   1   0   1   0   1   1 |   0   1   0   1   1   0  1   1  1 |  0  1  1  1  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3x . . .      |    6 |   3   3    0    0 | 320   *   *   *   *   *   *   * |   2   2   0   0   0   0  0   0  0 |  1  2  1  0  0
x . x . .      |    4 |   2   0    2    0 |   * 960   *   *   *   *   *   * |   1   0   1   1   0   0  0   0  0 |  1  1  0  1  0
x . . . x      |    4 |   2   0    0    2 |   *   * 960   *   *   *   *   * |   0   1   0   1   1   0  0   0  0 |  0  1  1  1  0
. x3x . .      |    6 |   0   3    3    0 |   *   *   * 640   *   *   *   * |   1   0   0   0   0   1  1   0  0 |  1  1  0  0  1
. x . . x      |    4 |   0   2    0    2 |   *   *   *   * 960   *   *   * |   0   1   0   0   0   0  1   1  0 |  0  1  1  0  1
. . x3o .      |    3 |   0   0    3    0 |   *   *   *   *   * 640   *   * |   0   0   1   0   0   1  0   0  1 |  1  0  0  1  1
. . x . x4/3*c |    8 |   0   0    4    4 |   *   *   *   *   *   * 480   * |   0   0   0   1   0   0  1   0  1 |  0  1  0  1  1
. . . o4x      |    4 |   0   0    0    4 |   *   *   *   *   *   *   * 480 |   0   0   0   0   1   0  0   1  1 |  0  0  1  1  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3x3x . .      ♦   24 |  12  12   12    0 |   4   6   0   4   0   0   0   0 | 160   *   *   *   *   *  *   *  * |  1  1  0  0  0
x3x . . x      ♦   12 |   6   6    0    6 |   2   0   3   0   3   0   0   0 |   * 320   *   *   *   *  *   *  * |  0  1  1  0  0
x . x3o .      ♦    6 |   3   0    6    0 |   0   3   0   0   0   2   0   0 |   *   * 320   *   *   *  *   *  * |  1  0  0  1  0
x . x . x4/3*c ♦   16 |   8   0    8    8 |   0   4   4   0   0   0   2   0 |   *   *   * 240   *   *  *   *  * |  0  1  0  1  0
x . . o4x      ♦    8 |   4   0    0    8 |   0   0   4   0   0   0   0   2 |   *   *   *   * 240   *  *   *  * |  0  0  1  1  0
. x3x3o .      ♦   12 |   0   6   12    0 |   0   0   0   4   0   4   0   0 |   *   *   *   *   * 160  *   *  * |  1  0  0  0  1
. x3x . x4/3*c ♦   48 |   0  24   24   24 |   0   0   0   8  12   0   6   0 |   *   *   *   *   *   * 80   *  * |  0  1  0  0  1
. x . o4x      ♦    8 |   0   4    0    8 |   0   0   0   0   4   0   0   2 |   *   *   *   *   *   *  * 240  * |  0  0  1  0  1
. . x3o4x4/3*c ♦   24 |   0   0   24   24 |   0   0   0   0   0   8   6   6 |   *   *   *   *   *   *  *   * 80 |  0  0  0  1  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3x3x3o .      ♦   60 |  30  30   60    0 |  10  30   0  20   0  20   0   0 |   5   0  10   0   0   5  0   0  0 | 32  *  *  *  *
x3x3x . x4/3*c ♦  384 | 192 192  192  192 |  64  96  96  64  96   0  48   0 |  16  32   0  24   0   0  8   0  0 |  * 10  *  *  *
x3x . o4x      ♦   24 |  12  12    0   24 |   4   0  12   0  12   0   0   6 |   0   4   0   0   3   0  0   3  0 |  *  * 80  *  *
x . x3o4x4/3*c ♦   48 |  24   0   48   48 |   0  24  24   0   0  16  12  12 |   0   0   8   6   6   0  0   0  2 |  *  *  * 40  *
. x3x3o4x4/3*c ♦  192 |   0  96  192  192 |   0   0   0  64  96  64  48  48 |   0   0   0   0   0  16  8  24  8 |  *  *  *  * 10
```