Acronym | cakix |
Name | celliskewed hexeract |
Circumradius | sqrt(5/2) = 1.581139 |
Face vector | 1920, 11520, 23040, 21120, 8048, 548 |
Confer |
|
As abstract polytope cakix is isomorphic to rackix, thereby replacing octagrams by octagons, resp. stop by op and gocco by socco, resp. tistodip by todip, goccope by soccope, and gittith by steth, resp scant by quacant, stotet by otet, tragocco by trasocco, gittithip by stethip, and ginnont by sinnont.
Incidence matrix according to Dynkin symbol
x3o3o3o3x4/3x4*d . . . . . . | 1920 | 4 4 4 | 6 12 12 6 6 4 | 4 12 12 12 12 12 4 4 6 | 1 4 4 6 6 12 4 4 12 1 1 4 | 1 1 4 6 4 1 -----------------+------+----------------+------------------------------+--------------------------------------------+--------------------------------------------------+-------------------- x . . . . . | 2 | 3840 * * | 3 3 3 0 0 0 | 3 6 6 3 3 3 0 0 0 | 1 3 3 3 3 6 1 1 3 0 0 0 | 1 1 3 3 1 0 . . . . x . | 2 | * 3840 * | 0 3 0 3 0 1 | 0 3 0 6 0 3 3 0 3 | 0 1 0 3 0 3 3 0 6 1 0 3 | 1 0 1 3 3 1 . . . . . x | 2 | * * 3840 | 0 0 3 0 3 1 | 0 0 3 0 6 3 0 3 3 | 0 0 1 0 3 3 0 3 6 0 1 3 | 0 1 1 3 3 1 -----------------+------+----------------+------------------------------+--------------------------------------------+--------------------------------------------------+-------------------- x3o . . . . | 3 | 3 0 0 | 3840 * * * * * | 2 2 2 0 0 0 0 0 0 | 1 2 2 1 1 2 0 0 0 0 0 0 | 1 1 2 1 0 0 x . . . x . | 4 | 2 2 0 | * 5760 * * * * | 0 2 0 2 0 1 0 0 0 | 0 1 0 2 0 2 1 0 2 0 0 0 | 1 0 1 2 1 0 x . . . . x | 4 | 2 0 2 | * * 5760 * * * | 0 0 2 0 2 1 0 0 0 | 0 0 1 0 2 2 0 1 2 0 0 0 | 0 1 1 2 1 0 . . . o3x . | 3 | 0 3 0 | * * * 3840 * * | 0 0 0 2 0 0 2 0 1 | 0 0 0 1 0 0 2 0 2 1 0 2 | 1 0 0 1 2 1 . . . o . x4*d | 4 | 0 0 4 | * * * * 2880 * | 0 0 0 0 2 0 0 2 2 | 0 0 0 0 1 0 0 2 2 0 1 2 | 0 1 0 1 2 1 . . . . x4/3x | 8 | 0 4 4 | * * * * * 960 | 0 0 0 0 0 3 0 0 3 | 0 0 0 0 0 3 0 0 6 0 0 3 | 0 0 1 3 3 1 -----------------+------+----------------+------------------------------+--------------------------------------------+--------------------------------------------------+-------------------- x3o3o . . . ♦ 4 | 6 0 0 | 4 0 0 0 0 0 | 1920 * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 x3o . . x . ♦ 6 | 6 3 0 | 2 3 0 0 0 0 | * 3840 * * * * * * * | 0 1 0 1 0 1 0 0 0 0 0 0 | 1 0 1 1 0 0 x3o . . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * * 3840 * * * * * * | 0 0 1 0 1 1 0 0 0 0 0 0 | 0 1 1 1 0 0 x . . o3x . ♦ 6 | 3 6 0 | 0 3 0 2 0 0 | * * * 3840 * * * * * | 0 0 0 1 0 0 1 0 1 0 0 0 | 1 0 0 1 1 0 x . . o . x4*d ♦ 8 | 4 0 8 | 0 0 4 0 2 0 | * * * * 2880 * * * * | 0 0 0 0 1 0 0 1 1 0 0 0 | 0 1 0 1 1 0 x . . . x4/3x ♦ 16 | 8 8 8 | 0 4 4 0 0 2 | * * * * * 1440 * * * | 0 0 0 0 0 2 0 0 2 0 0 0 | 0 0 1 2 1 0 . . o3o3x . ♦ 4 | 0 6 0 | 0 0 0 4 0 0 | * * * * * * 1920 * * | 0 0 0 0 0 0 1 0 0 1 0 1 | 1 0 0 0 1 1 . . o3o . x4*d ♦ 8 | 0 0 12 | 0 0 0 0 6 0 | * * * * * * * 960 * | 0 0 0 0 0 0 0 1 0 0 1 1 | 0 1 0 0 1 1 . . . o3x4/3x4*d ♦ 24 | 0 24 24 | 0 0 0 8 6 6 | * * * * * * * * 480 | 0 0 0 0 0 0 0 0 2 0 0 2 | 0 0 0 1 2 1 -----------------+------+----------------+------------------------------+--------------------------------------------+--------------------------------------------------+-------------------- x3o3o3o . . ♦ 5 | 10 0 0 | 10 0 0 0 0 0 | 5 0 0 0 0 0 0 0 0 | 384 * * * * * * * * * * * | 1 1 0 0 0 0 x3o3o . x . ♦ 8 | 12 4 0 | 8 6 0 0 0 0 | 2 4 0 0 0 0 0 0 0 | * 960 * * * * * * * * * * | 1 0 1 0 0 0 x3o3o . . x ♦ 8 | 12 0 4 | 8 0 6 0 0 0 | 2 0 4 0 0 0 0 0 0 | * * 960 * * * * * * * * * | 0 1 1 0 0 0 x3o . o3x . ♦ 9 | 9 9 0 | 3 9 0 3 0 0 | 0 3 0 3 0 0 0 0 0 | * * * 1280 * * * * * * * * | 1 0 0 1 0 0 x3o . o . x4*d ♦ 12 | 12 0 12 | 4 0 12 0 3 0 | 0 0 4 0 3 0 0 0 0 | * * * * 960 * * * * * * * | 0 1 0 1 0 0 x3o . . x4/3x ♦ 24 | 24 12 12 | 8 12 12 0 0 3 | 0 4 4 0 0 3 0 0 0 | * * * * * 960 * * * * * * | 0 0 1 1 0 0 x . o3o3x . ♦ 8 | 4 12 0 | 0 6 0 8 0 0 | 0 0 0 4 0 0 2 0 0 | * * * * * * 960 * * * * * | 1 0 0 0 1 0 x . o3o . x4*d ♦ 16 | 8 0 24 | 0 0 12 0 12 0 | 0 0 0 0 6 0 0 2 0 | * * * * * * * 480 * * * * | 0 1 0 0 1 0 x . . o3x4/3x4*d ♦ 48 | 24 48 48 | 0 24 24 16 12 12 | 0 0 0 8 6 6 0 0 2 | * * * * * * * * 480 * * * | 0 0 0 1 1 0 . o3o3o3x . ♦ 5 | 0 10 0 | 0 0 0 10 0 0 | 0 0 0 0 0 0 5 0 0 | * * * * * * * * * 384 * * | 1 0 0 0 0 1 . o3o3o . x4*d ♦ 16 | 0 0 32 | 0 0 0 0 24 0 | 0 0 0 0 0 0 0 8 0 | * * * * * * * * * * 120 * | 0 1 0 0 0 1 . . o3o3x4/3x4*d ♦ 64 | 0 96 96 | 0 0 0 64 48 24 | 0 0 0 0 0 0 16 8 8 | * * * * * * * * * * * 120 | 0 0 0 0 1 1 -----------------+------+----------------+------------------------------+--------------------------------------------+--------------------------------------------------+-------------------- x3o3o3o3x . ♦ 30 | 60 60 0 | 60 90 0 60 0 0 | 30 60 0 60 0 0 30 0 0 | 6 15 0 20 0 0 15 0 0 6 0 0 | 64 * * * * * x3o3o3o . x4*d ♦ 160 | 320 0 320 | 320 0 480 0 240 0 | 160 0 320 0 240 0 0 80 0 | 32 0 80 0 80 0 0 40 0 0 10 0 | * 12 * * * * x3o3o . x4/3x ♦ 32 | 48 16 16 | 32 24 24 0 0 4 | 8 16 16 0 0 6 0 0 0 | 0 4 4 0 0 4 0 0 0 0 0 0 | * * 240 * * * x3o . o3x4/3x4*d ♦ 72 | 72 72 72 | 24 72 72 24 18 18 | 0 24 24 24 18 18 0 0 3 | 0 0 0 8 6 6 0 0 3 0 0 0 | * * * 160 * * x . o3o3x4/3x4*d ♦ 128 | 64 192 192 | 0 96 96 128 96 48 | 0 0 0 64 48 24 32 16 16 | 0 0 0 0 0 0 16 8 8 0 0 2 | * * * * 60 * . o3o3o3x4/3x4*d ♦ 160 | 0 320 320 | 0 0 0 320 240 80 | 0 0 0 0 0 0 160 80 40 | 0 0 0 0 0 0 0 0 0 32 10 10 | * * * * * 12
© 2004-2024 | top of page |