Acronym skatbacadint
Name small skewtrigonary biprismatocellidispenteractitriacontiditeron
Field of sections
 ©
Circumradius 3/2 = 1.5
Vertex figure
 ©
Colonel of regiment (is itself locally convex – other uniform polyteral members:
by cells: gittith goccope sidpith soccope spid steth tistodip todip
skatbacadint 1040100320800
gektabcadont 0010403210080
& others)
Face vector 640, 2880, 3920, 1920, 172
Confer
general polytopal classes:
Wythoffian polytera  
External
links
polytopewiki  

As abstract polytope skatbacadint is isomorphic to gektabcadont, thereby replacing octagrams by octagons, resp. gocco by socco and stop by op, resp. gittith by steth, goccope by soccope, and tistodip by todip.


Incidence matrix according to Dynkin symbol

x3o3o3x4/3x4*c

. . . .   .    | 640 |   3   3   3 |   3   6   6   3   3   3 |   1   3   3   3   3   6   1  1  3 |  1  1  3  3  1
---------------+-----+-------------+-------------------------+-----------------------------------+---------------
x . . .   .    |   2 | 960   *   * |   2   2   2   0   0   0 |   1   2   2   1   1   2   0  0  0 |  1  1  2  1  0
. . . x   .    |   2 |   * 960   * |   0   2   0   2   0   1 |   0   1   0   2   0   2   1  0  2 |  1  0  1  2  1
. . . .   x    |   2 |   *   * 960 |   0   0   2   0   2   1 |   0   0   1   0   2   2   0  1  2 |  0  1  1  2  1
---------------+-----+-------------+-------------------------+-----------------------------------+---------------
x3o . .   .    |   3 |   3   0   0 | 640   *   *   *   *   * |   1   1   1   0   0   0   0  0  0 |  1  1  1  0  0
x . . x   .    |   4 |   2   2   0 |   * 960   *   *   *   * |   0   1   0   1   0   1   0  0  0 |  1  0  1  1  0
x . . .   x    |   4 |   2   0   2 |   *   * 960   *   *   * |   0   0   1   0   1   1   0  0  0 |  0  1  1  1  0
. . o3x   .    |   3 |   0   3   0 |   *   *   * 640   *   * |   0   0   0   1   0   0   1  0  1 |  1  0  0  1  1
. . o .   x4*c |   4 |   0   0   4 |   *   *   *   * 480   * |   0   0   0   0   1   0   0  1  1 |  0  1  0  1  1
. . . x4/3x    |   8 |   0   4   4 |   *   *   *   *   * 240 |   0   0   0   0   0   2   0  0  2 |  0  0  1  2  1
---------------+-----+-------------+-------------------------+-----------------------------------+---------------
x3o3o .   .       4 |   6   0   0 |   4   0   0   0   0   0 | 160   *   *   *   *   *   *  *  * |  1  1  0  0  0
x3o . x   .       6 |   6   3   0 |   2   3   0   0   0   0 |   * 320   *   *   *   *   *  *  * |  1  0  1  0  0
x3o . .   x       6 |   6   0   3 |   2   0   3   0   0   0 |   *   * 320   *   *   *   *  *  * |  0  1  1  0  0
x . o3x   .       6 |   3   6   0 |   0   3   0   2   0   0 |   *   *   * 320   *   *   *  *  * |  1  0  0  1  0
x . o .   x4*c    8 |   4   0   8 |   0   0   4   0   2   0 |   *   *   *   * 240   *   *  *  * |  0  1  0  1  0
x . . x4/3x      16 |   8   8   8 |   0   4   4   0   0   2 |   *   *   *   *   * 240   *  *  * |  0  0  1  1  0
. o3o3x   .       4 |   0   6   0 |   0   0   0   4   0   0 |   *   *   *   *   *   * 160  *  * |  1  0  0  0  1
. o3o .   x4*c    8 |   0   0  12 |   0   0   0   0   6   0 |   *   *   *   *   *   *   * 80  * |  0  1  0  0  1
. . o3x4/3x4*c   24 |   0  24  24 |   0   0   0   8   6   6 |   *   *   *   *   *   *   *  * 80 |  0  0  0  1  1
---------------+-----+-------------+-------------------------+-----------------------------------+---------------
x3o3o3x   .      20 |  30  30   0 |  20  30   0  20   0   0 |   5  10   0  10   0   0   5  0  0 | 32  *  *  *  *
x3o3o .   x4*c   64 |  96   0  96 |  64   0  96   0  48   0 |  16   0  32   0  24   0   0  8  0 |  * 10  *  *  *
x3o . x4/3x      24 |  24  12  12 |   8  12  12   0   0   3 |   0   4   4   0   0   3   0  0  0 |  *  * 80  *  *
x . o3x4/3x4*c   48 |  24  48  48 |   0  24  24  16  12  12 |   0   0   0   8   6   6   0  0  2 |  *  *  * 40  *
. o3o3x4/3x4*c   64 |   0  96  96 |   0   0   0  64  48  24 |   0   0   0   0   0   0  16  8  8 |  *  *  *  * 10

© 2004-2024
top of page