Acronym gektabcadont (old: giktabacadint)
Name great skewtrigonary biprismatocellidispenteractitriacontiditeron
Circumradius 3/2 = 1.5
Colonel of regiment skatbacadint
Face vector 640, 2880, 3920, 1920, 172
Confer
general polytopal classes:
Wythoffian polytera  
External
links
polytopewiki

As abstract polytope gektabcadont is isomorphic to skatbacadint, thereby replacing octagons by octagrams, resp. socco by gocco and op by stop, resp. steth by gittith, soccope by goccope, and todip by tistodip. – As such gektabcadont is a lieutenant.


Incidence matrix according to Dynkin symbol

x3o3o3x4x4/3*c

. . . . .      | 640 |   3   3   3 |   3   6   6   3   3   3 |   1   3   3   3   3   6   1  1  3 |  1  1  3  3  1
---------------+-----+-------------+-------------------------+-----------------------------------+---------------
x . . . .      |   2 | 960   *   * |   2   2   2   0   0   0 |   1   2   2   1   1   2   0  0  0 |  1  1  2  1  0
. . . x .      |   2 |   * 960   * |   0   2   0   2   0   1 |   0   1   0   2   0   2   1  0  2 |  1  0  1  2  1
. . . . x      |   2 |   *   * 960 |   0   0   2   0   2   1 |   0   0   1   0   2   2   0  1  2 |  0  1  1  2  1
---------------+-----+-------------+-------------------------+-----------------------------------+---------------
x3o . . .      |   3 |   3   0   0 | 640   *   *   *   *   * |   1   1   1   0   0   0   0  0  0 |  1  1  1  0  0
x . . x .      |   4 |   2   2   0 |   * 960   *   *   *   * |   0   1   0   1   0   1   0  0  0 |  1  0  1  1  0
x . . . x      |   4 |   2   0   2 |   *   * 960   *   *   * |   0   0   1   0   1   1   0  0  0 |  0  1  1  1  0
. . o3x .      |   3 |   0   3   0 |   *   *   * 640   *   * |   0   0   0   1   0   0   1  0  1 |  1  0  0  1  1
. . o . x4/3*c |   4 |   0   0   4 |   *   *   *   * 480   * |   0   0   0   0   1   0   0  1  1 |  0  1  0  1  1
. . . x4x      |   8 |   0   4   4 |   *   *   *   *   * 240 |   0   0   0   0   0   2   0  0  2 |  0  0  1  2  1
---------------+-----+-------------+-------------------------+-----------------------------------+---------------
x3o3o . .         4 |   6   0   0 |   4   0   0   0   0   0 | 160   *   *   *   *   *   *  *  * |  1  1  0  0  0
x3o . x .         6 |   6   3   0 |   2   3   0   0   0   0 |   * 320   *   *   *   *   *  *  * |  1  0  1  0  0
x3o . . x         6 |   6   0   3 |   2   0   3   0   0   0 |   *   * 320   *   *   *   *  *  * |  0  1  1  0  0
x . o3x .         6 |   3   6   0 |   0   3   0   2   0   0 |   *   *   * 320   *   *   *  *  * |  1  0  0  1  0
x . o . x4/3*c    8 |   4   0   8 |   0   0   4   0   2   0 |   *   *   *   * 240   *   *  *  * |  0  1  0  1  0
x . . x4x        16 |   8   8   8 |   0   4   4   0   0   2 |   *   *   *   *   * 240   *  *  * |  0  0  1  1  0
. o3o3x .         4 |   0   6   0 |   0   0   0   4   0   0 |   *   *   *   *   *   * 160  *  * |  1  0  0  0  1
. o3o . x4/3*c    8 |   0   0  12 |   0   0   0   0   6   0 |   *   *   *   *   *   *   * 80  * |  0  1  0  0  1
. . o3x4x4/3*c   24 |   0  24  24 |   0   0   0   8   6   6 |   *   *   *   *   *   *   *  * 80 |  0  0  0  1  1
---------------+-----+-------------+-------------------------+-----------------------------------+---------------
x3o3o3x .        20 |  30  30   0 |  20  30   0  20   0   0 |   5  10   0  10   0   0   5  0  0 | 32  *  *  *  *
x3o3o . x4/3*c   64 |  96   0  96 |  64   0  96   0  48   0 |  16   0  32   0  24   0   0  8  0 |  * 10  *  *  *
x3o . x4x        24 |  24  12  12 |   8  12  12   0   0   3 |   0   4   4   0   0   3   0  0  0 |  *  * 80  *  *
x . o3x4x4/3*c   48 |  24  48  48 |   0  24  24  16  12  12 |   0   0   0   8   6   6   0  0  2 |  *  *  * 40  *
. o3o3x4x4/3*c   64 |   0  96  96 |   0   0   0  64  48  24 |   0   0   0   0   0   0  16  8  8 |  *  *  *  * 10

© 2004-2025
top of page