Acronym | gektabcadont (old: giktabacadint) |
Name | great skewtrigonary biprismatocellidispenteractitriacontiditeron |
Circumradius | 3/2 = 1.5 |
Colonel of regiment | skatbacadint |
Face vector | 640, 2880, 3920, 1920, 172 |
Confer |
|
External links |
![]() |
As abstract polytope gektabcadont is isomorphic to skatbacadint, thereby replacing octagons by octagrams, resp. socco by gocco and op by stop, resp. steth by gittith, soccope by goccope, and todip by tistodip. – As such gektabcadont is a lieutenant.
Incidence matrix according to Dynkin symbol
3 3 3 x---o---o---x 4 \ / 4/3 x
x3o3o3x4x4/3*c . . . . . | 640 | 3 3 3 | 3 6 6 3 3 3 | 1 3 3 3 3 6 1 1 3 | 1 1 3 3 1 ---------------+-----+-------------+-------------------------+-----------------------------------+--------------- x . . . . | 2 | 960 * * | 2 2 2 0 0 0 | 1 2 2 1 1 2 0 0 0 | 1 1 2 1 0 . . . x . | 2 | * 960 * | 0 2 0 2 0 1 | 0 1 0 2 0 2 1 0 2 | 1 0 1 2 1 . . . . x | 2 | * * 960 | 0 0 2 0 2 1 | 0 0 1 0 2 2 0 1 2 | 0 1 1 2 1 ---------------+-----+-------------+-------------------------+-----------------------------------+--------------- x3o . . . | 3 | 3 0 0 | 640 * * * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 x . . x . | 4 | 2 2 0 | * 960 * * * * | 0 1 0 1 0 1 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 2 | * * 960 * * * | 0 0 1 0 1 1 0 0 0 | 0 1 1 1 0 . . o3x . | 3 | 0 3 0 | * * * 640 * * | 0 0 0 1 0 0 1 0 1 | 1 0 0 1 1 . . o . x4/3*c | 4 | 0 0 4 | * * * * 480 * | 0 0 0 0 1 0 0 1 1 | 0 1 0 1 1 . . . x4x | 8 | 0 4 4 | * * * * * 240 | 0 0 0 0 0 2 0 0 2 | 0 0 1 2 1 ---------------+-----+-------------+-------------------------+-----------------------------------+--------------- x3o3o . . ♦ 4 | 6 0 0 | 4 0 0 0 0 0 | 160 * * * * * * * * | 1 1 0 0 0 x3o . x . ♦ 6 | 6 3 0 | 2 3 0 0 0 0 | * 320 * * * * * * * | 1 0 1 0 0 x3o . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * * 320 * * * * * * | 0 1 1 0 0 x . o3x . ♦ 6 | 3 6 0 | 0 3 0 2 0 0 | * * * 320 * * * * * | 1 0 0 1 0 x . o . x4/3*c ♦ 8 | 4 0 8 | 0 0 4 0 2 0 | * * * * 240 * * * * | 0 1 0 1 0 x . . x4x ♦ 16 | 8 8 8 | 0 4 4 0 0 2 | * * * * * 240 * * * | 0 0 1 1 0 . o3o3x . ♦ 4 | 0 6 0 | 0 0 0 4 0 0 | * * * * * * 160 * * | 1 0 0 0 1 . o3o . x4/3*c ♦ 8 | 0 0 12 | 0 0 0 0 6 0 | * * * * * * * 80 * | 0 1 0 0 1 . . o3x4x4/3*c ♦ 24 | 0 24 24 | 0 0 0 8 6 6 | * * * * * * * * 80 | 0 0 0 1 1 ---------------+-----+-------------+-------------------------+-----------------------------------+--------------- x3o3o3x . ♦ 20 | 30 30 0 | 20 30 0 20 0 0 | 5 10 0 10 0 0 5 0 0 | 32 * * * * x3o3o . x4/3*c ♦ 64 | 96 0 96 | 64 0 96 0 48 0 | 16 0 32 0 24 0 0 8 0 | * 10 * * * x3o . x4x ♦ 24 | 24 12 12 | 8 12 12 0 0 3 | 0 4 4 0 0 3 0 0 0 | * * 80 * * x . o3x4x4/3*c ♦ 48 | 24 48 48 | 0 24 24 16 12 12 | 0 0 0 8 6 6 0 0 2 | * * * 40 * . o3o3x4x4/3*c ♦ 64 | 0 96 96 | 0 0 0 64 48 24 | 0 0 0 0 0 0 16 8 8 | * * * * 10
3/2 3/2 3 x---o---o---x 4 \ / 4 x
x3o3/2o3/2x4x4*c . . . . . | 640 | 3 3 3 | 3 6 6 3 3 3 | 1 3 3 3 3 6 1 1 3 | 1 1 3 3 1 -----------------+-----+-------------+-------------------------+-----------------------------------+--------------- x . . . . | 2 | 960 * * | 2 2 2 0 0 0 | 1 2 2 1 1 2 0 0 0 | 1 1 2 1 0 . . . x . | 2 | * 960 * | 0 2 0 2 0 1 | 0 1 0 2 0 2 1 0 2 | 1 0 1 2 1 . . . . x | 2 | * * 960 | 0 0 2 0 2 1 | 0 0 1 0 2 2 0 1 2 | 0 1 1 2 1 -----------------+-----+-------------+-------------------------+-----------------------------------+--------------- x3o . . . | 3 | 3 0 0 | 640 * * * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 x . . x . | 4 | 2 2 0 | * 960 * * * * | 0 1 0 1 0 1 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 2 | * * 960 * * * | 0 0 1 0 1 1 0 0 0 | 0 1 1 1 0 . . o3/2x . | 3 | 0 3 0 | * * * 640 * * | 0 0 0 1 0 0 1 0 1 | 1 0 0 1 1 . . o . x4*c | 4 | 0 0 4 | * * * * 480 * | 0 0 0 0 1 0 0 1 1 | 0 1 0 1 1 . . . x4x | 8 | 0 4 4 | * * * * * 240 | 0 0 0 0 0 2 0 0 2 | 0 0 1 2 1 -----------------+-----+-------------+-------------------------+-----------------------------------+--------------- x3o3/2o . . ♦ 4 | 6 0 0 | 4 0 0 0 0 0 | 160 * * * * * * * * | 1 1 0 0 0 x3o . x . ♦ 6 | 6 3 0 | 2 3 0 0 0 0 | * 320 * * * * * * * | 1 0 1 0 0 x3o . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * * 320 * * * * * * | 0 1 1 0 0 x . o3/2x . ♦ 6 | 3 6 0 | 0 3 0 2 0 0 | * * * 320 * * * * * | 1 0 0 1 0 x . o . x4*c ♦ 8 | 4 0 8 | 0 0 4 0 2 0 | * * * * 240 * * * * | 0 1 0 1 0 x . . x4x ♦ 16 | 8 8 8 | 0 4 4 0 0 2 | * * * * * 240 * * * | 0 0 1 1 0 . o3/2o3/2x . ♦ 4 | 0 6 0 | 0 0 0 4 0 0 | * * * * * * 160 * * | 1 0 0 0 1 . o3/2o . x4*c ♦ 8 | 0 0 12 | 0 0 0 0 6 0 | * * * * * * * 80 * | 0 1 0 0 1 . . o3/2x4x4*c ♦ 24 | 0 24 24 | 0 0 0 8 6 6 | * * * * * * * * 80 | 0 0 0 1 1 -----------------+-----+-------------+-------------------------+-----------------------------------+--------------- x3o3/2o3/2x . ♦ 20 | 30 30 0 | 20 30 0 20 0 0 | 5 10 0 10 0 0 5 0 0 | 32 * * * * x3o3/2o . x4*c ♦ 64 | 96 0 96 | 64 0 96 0 48 0 | 16 0 32 0 24 0 0 8 0 | * 10 * * * x3o . x4x ♦ 24 | 24 12 12 | 8 12 12 0 0 3 | 0 4 4 0 0 3 0 0 0 | * * 80 * * x . o3/2x4x4*c ♦ 48 | 24 48 48 | 0 24 24 16 12 12 | 0 0 0 8 6 6 0 0 2 | * * * 40 * . o3/2o3/2x4x4*c ♦ 64 | 0 96 96 | 0 0 0 64 48 24 | 0 0 0 0 0 0 16 8 8 | * * * * 10
3 3/2 3/2 x---o---o---x 4 \ / 4/3 x
x3/2o3/2o3x4x4/3*c . . . . . | 640 | 3 3 3 | 3 6 6 3 3 3 | 1 3 3 3 3 6 1 1 3 | 1 1 3 3 1 -------------------+-----+-------------+-------------------------+-----------------------------------+--------------- x . . . . | 2 | 960 * * | 2 2 2 0 0 0 | 1 2 2 1 1 2 0 0 0 | 1 1 2 1 0 . . . x . | 2 | * 960 * | 0 2 0 2 0 1 | 0 1 0 2 0 2 1 0 2 | 1 0 1 2 1 . . . . x | 2 | * * 960 | 0 0 2 0 2 1 | 0 0 1 0 2 2 0 1 2 | 0 1 1 2 1 -------------------+-----+-------------+-------------------------+-----------------------------------+--------------- x3/2o . . . | 3 | 3 0 0 | 640 * * * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 x . . x . | 4 | 2 2 0 | * 960 * * * * | 0 1 0 1 0 1 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 2 | * * 960 * * * | 0 0 1 0 1 1 0 0 0 | 0 1 1 1 0 . . o3x . | 3 | 0 3 0 | * * * 640 * * | 0 0 0 1 0 0 1 0 1 | 1 0 0 1 1 . . o . x4/3*c | 4 | 0 0 4 | * * * * 480 * | 0 0 0 0 1 0 0 1 1 | 0 1 0 1 1 . . . x4x | 8 | 0 4 4 | * * * * * 240 | 0 0 0 0 0 2 0 0 2 | 0 0 1 2 1 -------------------+-----+-------------+-------------------------+-----------------------------------+--------------- x3/2o3/2o . . ♦ 4 | 6 0 0 | 4 0 0 0 0 0 | 160 * * * * * * * * | 1 1 0 0 0 x3/2o . x . ♦ 6 | 6 3 0 | 2 3 0 0 0 0 | * 320 * * * * * * * | 1 0 1 0 0 x3/2o . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * * 320 * * * * * * | 0 1 1 0 0 x . o3x . ♦ 6 | 3 6 0 | 0 3 0 2 0 0 | * * * 320 * * * * * | 1 0 0 1 0 x . o . x4/3*c ♦ 8 | 4 0 8 | 0 0 4 0 2 0 | * * * * 240 * * * * | 0 1 0 1 0 x . . x4x ♦ 16 | 8 8 8 | 0 4 4 0 0 2 | * * * * * 240 * * * | 0 0 1 1 0 . o3/2o3x . ♦ 4 | 0 6 0 | 0 0 0 4 0 0 | * * * * * * 160 * * | 1 0 0 0 1 . o3/2o . x4/3*c ♦ 8 | 0 0 12 | 0 0 0 0 6 0 | * * * * * * * 80 * | 0 1 0 0 1 . . o3x4x4/3*c ♦ 24 | 0 24 24 | 0 0 0 8 6 6 | * * * * * * * * 80 | 0 0 0 1 1 -------------------+-----+-------------+-------------------------+-----------------------------------+--------------- x3/2o3/2o3x . ♦ 20 | 30 30 0 | 20 30 0 20 0 0 | 5 10 0 10 0 0 5 0 0 | 32 * * * * x3/2o3/2o . x4/3*c ♦ 64 | 96 0 96 | 64 0 96 0 48 0 | 16 0 32 0 24 0 0 8 0 | * 10 * * * x3/2o . x4x ♦ 24 | 24 12 12 | 8 12 12 0 0 3 | 0 4 4 0 0 3 0 0 0 | * * 80 * * x . o3x4x4/3*c ♦ 48 | 24 48 48 | 0 24 24 16 12 12 | 0 0 0 8 6 6 0 0 2 | * * * 40 * . o3/2o3x4x4/3*c ♦ 64 | 0 96 96 | 0 0 0 64 48 24 | 0 0 0 0 0 0 16 8 8 | * * * * 10
3/2 3 3/2 x---o---o---x 4 \ / 4 x
x3/2o3o3/2x4x4*c . . . . . | 640 | 3 3 3 | 3 6 6 3 3 3 | 1 3 3 3 3 6 1 1 3 | 1 1 3 3 1 -----------------+-----+-------------+-------------------------+-----------------------------------+--------------- x . . . . | 2 | 960 * * | 2 2 2 0 0 0 | 1 2 2 1 1 2 0 0 0 | 1 1 2 1 0 . . . x . | 2 | * 960 * | 0 2 0 2 0 1 | 0 1 0 2 0 2 1 0 2 | 1 0 1 2 1 . . . . x | 2 | * * 960 | 0 0 2 0 2 1 | 0 0 1 0 2 2 0 1 2 | 0 1 1 2 1 -----------------+-----+-------------+-------------------------+-----------------------------------+--------------- x3/2o . . . | 3 | 3 0 0 | 640 * * * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 x . . x . | 4 | 2 2 0 | * 960 * * * * | 0 1 0 1 0 1 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 2 | * * 960 * * * | 0 0 1 0 1 1 0 0 0 | 0 1 1 1 0 . . o3/2x . | 3 | 0 3 0 | * * * 640 * * | 0 0 0 1 0 0 1 0 1 | 1 0 0 1 1 . . o . x4*c | 4 | 0 0 4 | * * * * 480 * | 0 0 0 0 1 0 0 1 1 | 0 1 0 1 1 . . . x4x | 8 | 0 4 4 | * * * * * 240 | 0 0 0 0 0 2 0 0 2 | 0 0 1 2 1 -----------------+-----+-------------+-------------------------+-----------------------------------+--------------- x3/2o3o . . ♦ 4 | 6 0 0 | 4 0 0 0 0 0 | 160 * * * * * * * * | 1 1 0 0 0 x3/2o . x . ♦ 6 | 6 3 0 | 2 3 0 0 0 0 | * 320 * * * * * * * | 1 0 1 0 0 x3/2o . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * * 320 * * * * * * | 0 1 1 0 0 x . o3/2x . ♦ 6 | 3 6 0 | 0 3 0 2 0 0 | * * * 320 * * * * * | 1 0 0 1 0 x . o . x4*c ♦ 8 | 4 0 8 | 0 0 4 0 2 0 | * * * * 240 * * * * | 0 1 0 1 0 x . . x4x ♦ 16 | 8 8 8 | 0 4 4 0 0 2 | * * * * * 240 * * * | 0 0 1 1 0 . o3o3/2x . ♦ 4 | 0 6 0 | 0 0 0 4 0 0 | * * * * * * 160 * * | 1 0 0 0 1 . o3o . x4*c ♦ 8 | 0 0 12 | 0 0 0 0 6 0 | * * * * * * * 80 * | 0 1 0 0 1 . . o3/2x4x4*c ♦ 24 | 0 24 24 | 0 0 0 8 6 6 | * * * * * * * * 80 | 0 0 0 1 1 -----------------+-----+-------------+-------------------------+-----------------------------------+--------------- x3/2o3o3/2x . ♦ 20 | 30 30 0 | 20 30 0 20 0 0 | 5 10 0 10 0 0 5 0 0 | 32 * * * * x3/2o3o . x4*c ♦ 64 | 96 0 96 | 64 0 96 0 48 0 | 16 0 32 0 24 0 0 8 0 | * 10 * * * x3/2o . x4x ♦ 24 | 24 12 12 | 8 12 12 0 0 3 | 0 4 4 0 0 3 0 0 0 | * * 80 * * x . o3/2x4x4*c ♦ 48 | 24 48 48 | 0 24 24 16 12 12 | 0 0 0 8 6 6 0 0 2 | * * * 40 * . o3o3/2x4x4*c ♦ 64 | 0 96 96 | 0 0 0 64 48 24 | 0 0 0 0 0 0 16 8 8 | * * * * 10
© 2004-2025 | top of page |