Acronym | quoptax |
Name | quasiprismatotruncated hexeract |
Circumradius | sqrt[(17-8 sqrt(2))/2] = 1.686163 |
Coordinates | ((2 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2) & all permutations, all changes of sign |
Face vector | 3840, 17280, 25280, 16000, 4668, 508 |
Confer |
|
As abstract polytope quoptax is isomorphic to potax, thereby replacing octagrams by octagons, resp. quith by tic and stop by op, resp. quiproh by proh and tistodip by todip, resp quiptin by pattin and stotet by otet.
Incidence matrix according to Dynkin symbol
o3o3x3o3x4/3x . . . . . . | 3840 | 6 2 1 | 6 3 3 3 1 2 | 2 3 6 6 3 3 6 1 | 1 2 2 3 3 6 3 | 1 1 2 3 --------------+------+-----------------+------------------------------+---------------------------------------+----------------------------+-------------- . . x . . . | 2 | 11520 * * | 2 1 1 1 0 0 | 1 2 2 2 1 1 1 0 | 1 1 1 2 2 2 1 | 1 1 1 2 . . . . x . | 2 | * 3840 * | 0 0 3 0 1 1 | 0 0 3 0 3 0 3 1 | 0 1 0 3 0 3 3 | 1 0 1 3 . . . . . x | 2 | * * 1920 | 0 0 0 6 0 2 | 0 0 0 6 0 3 6 1 | 0 0 2 0 3 6 3 | 0 1 2 3 --------------+------+-----------------+------------------------------+---------------------------------------+----------------------------+-------------- . o3x . . . | 3 | 3 0 0 | 7680 * * * * * | 1 1 1 1 0 0 0 0 | 1 1 1 1 1 1 0 | 1 1 1 1 . . x3o . . | 3 | 3 0 0 | * 3840 * * * * | 0 2 0 0 1 1 0 0 | 1 0 0 2 2 0 1 | 1 1 0 2 . . x . x . | 4 | 2 2 0 | * * 5760 * * * | 0 0 2 0 1 0 1 0 | 0 1 0 2 0 2 1 | 1 0 1 2 . . x . . x | 4 | 2 0 2 | * * * 5760 * * | 0 0 0 2 0 1 1 0 | 0 0 1 0 2 2 1 | 0 1 1 2 . . . o3x . | 3 | 0 3 0 | * * * * 1280 * | 0 0 0 0 3 0 0 1 | 0 0 0 3 0 0 3 | 1 0 0 3 . . . . x4/3x | 8 | 0 4 4 | * * * * * 960 | 0 0 0 0 0 0 3 1 | 0 0 0 0 0 3 3 | 0 0 1 3 --------------+------+-----------------+------------------------------+---------------------------------------+----------------------------+-------------- o3o3x . . . ♦ 4 | 6 0 0 | 4 0 0 0 0 0 | 1920 * * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 . o3x3o . . ♦ 6 | 12 0 0 | 4 4 0 0 0 0 | * 1920 * * * * * * | 1 0 0 1 1 0 0 | 1 1 0 1 . o3x . x . ♦ 6 | 6 3 0 | 2 0 3 0 0 0 | * * 3840 * * * * * | 0 1 0 1 0 1 0 | 1 0 1 1 . o3x . . x ♦ 6 | 6 0 3 | 2 0 0 3 0 0 | * * * 3840 * * * * | 0 0 1 0 1 1 0 | 0 1 1 1 . . x3o3x . ♦ 12 | 12 12 0 | 0 4 6 0 4 0 | * * * * 960 * * * | 0 0 0 2 0 0 1 | 1 0 0 2 . . x3o . x ♦ 6 | 6 0 3 | 0 2 0 3 0 0 | * * * * * 1920 * * | 0 0 0 0 2 0 1 | 0 1 0 2 . . x . x4/3x ♦ 16 | 8 8 8 | 0 0 4 4 0 2 | * * * * * * 1440 * | 0 0 0 0 0 2 1 | 0 0 1 2 . . . o3x4/3x ♦ 24 | 0 24 12 | 0 0 0 0 8 6 | * * * * * * * 160 | 0 0 0 0 0 0 3 | 0 0 0 3 --------------+------+-----------------+------------------------------+---------------------------------------+----------------------------+-------------- o3o3x3o . . ♦ 10 | 30 0 0 | 20 10 0 0 0 0 | 5 5 0 0 0 0 0 0 | 384 * * * * * * | 1 1 0 0 o3o3x . x . ♦ 8 | 12 4 0 | 8 0 6 0 0 0 | 2 0 4 0 0 0 0 0 | * 960 * * * * * | 1 0 1 0 o3o3x . . x ♦ 8 | 12 0 4 | 8 0 0 6 0 0 | 2 0 0 4 0 0 0 0 | * * 960 * * * * | 0 1 1 0 . o3x3o3x . ♦ 30 | 60 30 0 | 20 20 30 0 10 0 | 0 5 10 0 5 0 0 0 | * * * 384 * * * | 1 0 0 1 . o3x3o . x ♦ 12 | 24 0 6 | 8 8 0 12 0 0 | 0 2 0 4 0 4 0 0 | * * * * 960 * * | 0 1 0 1 . o3x . x4/3x ♦ 24 | 24 12 12 | 8 0 12 12 0 3 | 0 0 4 4 0 0 3 0 | * * * * * 960 * | 0 0 1 1 . . x3o3x4/3x ♦ 192 | 192 192 96 | 0 64 96 96 64 48 | 0 0 0 0 16 32 24 8 | * * * * * * 60 | 0 0 0 2 --------------+------+-----------------+------------------------------+---------------------------------------+----------------------------+-------------- o3o3x3o3x . ♦ 60 | 180 60 0 | 120 60 90 0 20 0 | 30 30 60 0 15 0 0 0 | 6 15 0 6 0 0 0 | 64 * * * o3o3x3o . x ♦ 20 | 60 0 10 | 40 20 0 30 0 0 | 10 10 0 20 0 10 0 0 | 2 0 5 0 5 0 0 | * 192 * * o3o3x . x4/3x ♦ 32 | 48 16 16 | 32 0 24 24 0 4 | 8 0 16 16 0 0 6 0 | 0 4 4 0 0 4 0 | * * 240 * . o3x3o3x4/3x ♦ 960 | 1920 960 480 | 640 640 960 960 320 240 | 0 160 320 320 160 320 240 40 | 0 0 0 32 80 80 10 | * * * 12
© 2004-2025 | top of page |