Acronym | pexnit |
Name | partially expanded penteractitriacontiditeron |
Circumradius | ... |
Lace city in approx. ASCII-art |
x3o4o o3x4o x3o4o -- o3x3o4o (ico) o3x4o o3o4q o3x4o -- o3o3x4o (rit) o3x4o o3o4q o3x4o -- o3o3x4o (rit) x3o4o o3x4o x3o4o -- o3x3o4o (ico) | | +-- pexic | +--------- pexrit +---------------- pexic |
Coordinates |
|
Face vector | 112, 608, 800, 360, 58 |
Confer |
|
This CRF polyteron can be obtained from nit by partial Stott expansion only within axial direction. This just results in the insertion of a medial segment, the rittip.
Incidence matrix according to Dynkin symbol
wx oo3xo3ox4oo&#zx o. o.3o.3o.4o. | 48 * | 8 4 0 0 | 4 8 8 4 0 0 | 4 2 1 4 8 0 0 | 1 4 2 0 .o .o3.o3.o4.o | * 64 | 0 3 1 6 | 0 0 3 6 6 6 | 0 0 3 1 6 6 2 | 0 2 3 2 -------------------+-------+----------------+-----------------------+-----------------------+---------- .. .. x. .. .. | 2 0 | 192 * * * | 1 2 1 0 0 0 | 2 1 0 1 2 0 0 | 1 2 1 0 oo oo3oo3oo4oo&#x | 1 1 | * 192 * * | 0 0 2 2 0 0 | 0 0 1 1 4 0 0 | 0 2 2 0 .x .. .. .. .. | 0 2 | * * 32 * | 0 0 0 0 6 0 | 0 0 3 0 0 6 0 | 0 0 3 2 .. .. .. .x .. | 0 2 | * * * 192 | 0 0 0 1 1 2 | 0 0 1 0 2 2 1 | 0 1 2 1 -------------------+-------+----------------+-----------------------+-----------------------+---------- .. o.3x. .. .. | 3 0 | 3 0 0 0 | 64 * * * * * | 2 0 0 1 0 0 0 | 1 2 0 0 .. .. x.3o. .. | 3 0 | 3 0 0 0 | * 128 * * * * | 1 1 0 0 1 0 0 | 1 1 1 0 .. .. xo .. ..&#x | 2 1 | 1 2 0 0 | * * 192 * * * | 0 0 0 1 2 0 0 | 0 2 1 0 .. .. .. ox ..&#x | 1 2 | 0 2 0 1 | * * * 192 * * | 0 0 1 0 2 0 0 | 0 1 2 0 .x .. .. .x .. | 0 4 | 0 0 2 2 | * * * * 96 * | 0 0 1 0 0 2 0 | 0 0 2 1 .. .. .o3.x .. | 0 3 | 0 0 0 3 | * * * * * 128 | 0 0 0 0 1 1 1 | 0 1 1 1 -------------------+-------+----------------+-----------------------+-----------------------+---------- .. o.3x.3o. .. ♦ 6 0 | 12 0 0 0 | 4 4 0 0 0 0 | 32 * * * * * * | 1 1 0 0 .. .. x.3o.4o. ♦ 6 0 | 12 0 0 0 | 0 8 0 0 0 0 | * 16 * * * * * | 1 0 1 0 wx .. .. ox4oo&#zx ♦ 2 8 | 0 8 4 8 | 0 0 0 8 4 0 | * * 24 * * * * | 0 0 2 0 .. oo3xo .. ..&#x ♦ 3 1 | 3 3 0 0 | 1 0 3 0 0 0 | * * * 64 * * * | 0 2 0 0 .. .. xo3ox ..&#x ♦ 3 3 | 3 6 0 3 | 0 1 3 3 0 1 | * * * * 128 * * | 0 1 1 0 .x .. .o3.x .. ♦ 0 6 | 0 0 3 6 | 0 0 0 0 3 2 | * * * * * 64 * | 0 0 1 1 .. .o3.o3.x .. ♦ 0 4 | 0 0 0 6 | 0 0 0 0 0 4 | * * * * * * 32 | 0 1 0 1 -------------------+-------+----------------+-----------------------+-----------------------+---------- .. o.3x.3o.4o. ♦ 24 0 | 96 0 0 0 | 32 64 0 0 0 0 | 16 8 0 0 0 0 0 | 2 * * * .. oo3xo3ox ..&#x ♦ 6 4 | 12 12 0 6 | 4 4 12 6 0 4 | 1 0 0 4 4 0 1 | * 32 * * wx .. xo3ox4oo&#x ♦ 12 24 | 24 48 12 48 | 0 16 24 48 24 16 | 0 2 6 0 16 8 0 | * * 8 * .x .o3.o3.x .. ♦ 0 8 | 0 0 4 12 | 0 0 0 0 6 8 | 0 0 0 0 0 4 2 | * * * 16
© 2004-2024 | top of page |