Acronym pabex tac Name partially biexpanded triacontaditeron Circumradius ... Lace cityin approx. ASCII-art ``` o3o4o o3o4o -- line o3o4o x3o4o x3o4o o3o4o -- pex hex o3o4o x3o4o x3o4o o3o4o -- pex hex o3o4o o3o4o -- line ``` ``` line -- line line esquidpy line -- pex hex line esquidpy line -- pex hex line -- line | | +-- square | +--------- quawros +---------------- square ``` ``` square -- square square squobcu square -- quawros square -- square ``` Coordinates (0, 0, 0; 1/2, (1+sqrt(2))/2)   & all permutations within last 2 coords, all changes of sign (1/sqrt(2), 0, 0; 0, 1/2)         & all permutations within each coords subset, all changes of sign Confer uniform relative: tac   scant   general polytopal classes: partial Stott expansions

This CRF polyteron can be obtained from tac by partial Stott expanding only within 2 orthogonal axial directions, perpendicular to its equatorial oct cross-section.

Incidence matrix according to Dynkin symbol

```xo4xx ox3oo4oo&#zx   → height = 0

o.4o. o.3o.4o.    | 8  * | 1 1  6  0  0 |  6  6 12 0  0  0 | 12 12  8  0  0 |  8  8 0
.o4.o .o3.o4.o    | * 24 | 0 0  2  2  4 |  1  2  8 1  8  4 |  4  8  8  4  8 |  4  8 4
------------------+------+--------------+------------------+----------------+--------
x. .. .. .. ..    | 2  0 | 4 *  *  *  * ♦  6  0  0 0  0  0 | 12  0  0  0  0 |  8  0 0
.. x. .. .. ..    | 2  0 | * 4  *  *  * ♦  0  6  0 0  0  0 |  0 12  0  0  0 |  0  8 0
oo4oo oo3oo4oo&#x | 1  1 | * * 48  *  * |  1  1  4 0  0  0 |  4  4  4  0  0 |  4  4 0
.. .x .. .. ..    | 0  2 | * *  * 24  * |  0  1  0 1  4  0 |  0  4  0  4  4 |  0  4 4
.. .. .x .. ..    | 0  2 | * *  *  * 48 |  0  0  2 0  2  2 |  1  2  4  1  4 |  2  4 2
------------------+------+--------------+------------------+----------------+--------
xo .. .. .. ..&#x | 2  1 | 1 0  2  0  0 | 24  *  * *  *  * |  4  0  0  0  0 |  4  0 0
.. xx .. .. ..&#x | 2  2 | 0 1  2  1  0 |  * 24  * *  *  * |  0  4  0  0  0 |  0  4 0
.. .. ox .. ..&#x | 1  2 | 0 0  2  0  1 |  *  * 96 *  *  * |  1  1  2  0  0 |  2  2 0
.o4.x .. .. ..    | 0  4 | 0 0  0  4  0 |  *  *  * 6  *  * |  0  0  0  4  0 |  0  0 4
.. .x .x .. ..    | 0  4 | 0 0  0  2  2 |  *  *  * * 48  * |  0  1  0  1  2 |  0  2 2
.. .. .x3.o ..    | 0  3 | 0 0  0  0  3 |  *  *  * *  * 32 |  0  0  2  0  2 |  1  2 1
------------------+------+--------------+------------------+----------------+--------
xo .. ox .. ..&#x ♦ 2  2 | 1 0  4  0  1 |  2  0  2 0  0  0 | 48  *  *  *  * |  2  0 0
.. xx ox .. ..&#x ♦ 2  4 | 0 1  4  2  2 |  0  2  2 0  1  0 |  * 48  *  *  * |  0  2 0
.. .. ox3oo ..&#x ♦ 1  3 | 0 0  3  0  3 |  0  0  3 0  0  1 |  *  * 64  *  * |  1  1 0
.o4.x .x .. ..    ♦ 0  8 | 0 0  0  8  4 |  0  0  0 2  4  0 |  *  *  * 12  * |  0  0 2
.. .x .x3.o ..    ♦ 0  6 | 0 0  0  3  6 |  0  0  0 0  3  2 |  *  *  *  * 32 |  0  1 1
------------------+------+--------------+------------------+----------------+--------
xo .. ox3oo ..&#x ♦ 2  3 | 1 0  6  0  3 |  3  0  6 0  0  1 |  3  0  2  0  0 | 32  * *
.. xx ox3oo ..&#x ♦ 2  6 | 0 1  6  3  6 |  0  3  6 0  3  2 |  0  3  2  0  1 |  * 32 *
.o4.x .x3.o ..    ♦ 0 12 | 0 0  0 12 12 |  0  0  0 3 12  4 |  0  0  0  3  4 |  *  * 8
```