Acronym | pabex tac |
Name | partially biexpanded triacontaditeron |
Circumradius | ... |
Lace city in approx. ASCII-art |
o3o4o o3o4o -- line o3o4o x3o4o x3o4o o3o4o -- pex hex o3o4o x3o4o x3o4o o3o4o -- pex hex o3o4o o3o4o -- line |
line -- line line esquidpy line -- pex hex line esquidpy line -- pex hex line -- line | | +-- square | +--------- quawros +---------------- square | |
square -- square square squobcu square -- quawros square -- square | |
Coordinates |
|
Face vector | 32, 128, 230, 204, 72 |
Confer |
|
This CRF polyteron can be obtained from tac by partial Stott expanding only within 2 orthogonal axial directions, perpendicular to its equatorial oct cross-section.
Incidence matrix according to Dynkin symbol
xo4xx ox3oo4oo&#zx → height = 0 o.4o. o.3o.4o. | 8 * | 1 1 6 0 0 | 6 6 12 0 0 0 | 12 12 8 0 0 | 8 8 0 .o4.o .o3.o4.o | * 24 | 0 0 2 2 4 | 1 2 8 1 8 4 | 4 8 8 4 8 | 4 8 4 ------------------+------+--------------+------------------+----------------+-------- x. .. .. .. .. | 2 0 | 4 * * * * ♦ 6 0 0 0 0 0 | 12 0 0 0 0 | 8 0 0 .. x. .. .. .. | 2 0 | * 4 * * * ♦ 0 6 0 0 0 0 | 0 12 0 0 0 | 0 8 0 oo4oo oo3oo4oo&#x | 1 1 | * * 48 * * | 1 1 4 0 0 0 | 4 4 4 0 0 | 4 4 0 .. .x .. .. .. | 0 2 | * * * 24 * | 0 1 0 1 4 0 | 0 4 0 4 4 | 0 4 4 .. .. .x .. .. | 0 2 | * * * * 48 | 0 0 2 0 2 2 | 1 2 4 1 4 | 2 4 2 ------------------+------+--------------+------------------+----------------+-------- xo .. .. .. ..&#x | 2 1 | 1 0 2 0 0 | 24 * * * * * | 4 0 0 0 0 | 4 0 0 .. xx .. .. ..&#x | 2 2 | 0 1 2 1 0 | * 24 * * * * | 0 4 0 0 0 | 0 4 0 .. .. ox .. ..&#x | 1 2 | 0 0 2 0 1 | * * 96 * * * | 1 1 2 0 0 | 2 2 0 .o4.x .. .. .. | 0 4 | 0 0 0 4 0 | * * * 6 * * | 0 0 0 4 0 | 0 0 4 .. .x .x .. .. | 0 4 | 0 0 0 2 2 | * * * * 48 * | 0 1 0 1 2 | 0 2 2 .. .. .x3.o .. | 0 3 | 0 0 0 0 3 | * * * * * 32 | 0 0 2 0 2 | 1 2 1 ------------------+------+--------------+------------------+----------------+-------- xo .. ox .. ..&#x ♦ 2 2 | 1 0 4 0 1 | 2 0 2 0 0 0 | 48 * * * * | 2 0 0 .. xx ox .. ..&#x ♦ 2 4 | 0 1 4 2 2 | 0 2 2 0 1 0 | * 48 * * * | 0 2 0 .. .. ox3oo ..&#x ♦ 1 3 | 0 0 3 0 3 | 0 0 3 0 0 1 | * * 64 * * | 1 1 0 .o4.x .x .. .. ♦ 0 8 | 0 0 0 8 4 | 0 0 0 2 4 0 | * * * 12 * | 0 0 2 .. .x .x3.o .. ♦ 0 6 | 0 0 0 3 6 | 0 0 0 0 3 2 | * * * * 32 | 0 1 1 ------------------+------+--------------+------------------+----------------+-------- xo .. ox3oo ..&#x ♦ 2 3 | 1 0 6 0 3 | 3 0 6 0 0 1 | 3 0 2 0 0 | 32 * * .. xx ox3oo ..&#x ♦ 2 6 | 0 1 6 3 6 | 0 3 6 0 3 2 | 0 3 2 0 1 | * 32 * .o4.x .x3.o .. ♦ 0 12 | 0 0 0 12 12 | 0 0 0 3 12 4 | 0 0 0 3 4 | * * 8
© 2004-2024 | top of page |