Acronym pabex tac
Name partially biexpanded triacontaditeron
Circumradius ...
Lace city
in approx. ASCII-art
       o3o4o    o3o4o       		-- line
                            
                            
                            
o3o4o  x3o4o    x3o4o  o3o4o		-- pex hex
                            
                            
                            
                            
                            
o3o4o  x3o4o    x3o4o  o3o4o		-- pex hex
                            
                            
                            
       o3o4o    o3o4o       		-- line
       line        		-- line
                   
                   
                   
line  esquidpy line		-- pex hex
                   
                   
                   
                   
                   
line  esquidpy line		-- pex hex
                   
                   
                   
       line        		-- line

  |      |      +-- square
  |      +--------- quawros
  +---------------- square
       square        	-- square
                   
                   
                   
square squobcu square	-- quawros
                   
                   
                   
       square        	-- square
Coordinates
  • (0, 0, 0; 1/2, (1+sqrt(2))/2)   & all permutations within last 2 coords, all changes of sign
  • (1/sqrt(2), 0, 0; 0, 1/2)         & all permutations within each coords subset, all changes of sign
Face vector 32, 128, 230, 204, 72
Confer
uniform relative:
tac   scant  
general polytopal classes:
partial Stott expansions  

This CRF polyteron can be obtained from tac by partial Stott expanding only within 2 orthogonal axial directions, perpendicular to its equatorial oct cross-section.


Incidence matrix according to Dynkin symbol

xo4xx ox3oo4oo&#zx   → height = 0

o.4o. o.3o.4o.    | 8  * | 1 1  6  0  0 |  6  6 12 0  0  0 | 12 12  8  0  0 |  8  8 0
.o4.o .o3.o4.o    | * 24 | 0 0  2  2  4 |  1  2  8 1  8  4 |  4  8  8  4  8 |  4  8 4
------------------+------+--------------+------------------+----------------+--------
x. .. .. .. ..    | 2  0 | 4 *  *  *  *   6  0  0 0  0  0 | 12  0  0  0  0 |  8  0 0
.. x. .. .. ..    | 2  0 | * 4  *  *  *   0  6  0 0  0  0 |  0 12  0  0  0 |  0  8 0
oo4oo oo3oo4oo&#x | 1  1 | * * 48  *  * |  1  1  4 0  0  0 |  4  4  4  0  0 |  4  4 0
.. .x .. .. ..    | 0  2 | * *  * 24  * |  0  1  0 1  4  0 |  0  4  0  4  4 |  0  4 4
.. .. .x .. ..    | 0  2 | * *  *  * 48 |  0  0  2 0  2  2 |  1  2  4  1  4 |  2  4 2
------------------+------+--------------+------------------+----------------+--------
xo .. .. .. ..&#x | 2  1 | 1 0  2  0  0 | 24  *  * *  *  * |  4  0  0  0  0 |  4  0 0
.. xx .. .. ..&#x | 2  2 | 0 1  2  1  0 |  * 24  * *  *  * |  0  4  0  0  0 |  0  4 0
.. .. ox .. ..&#x | 1  2 | 0 0  2  0  1 |  *  * 96 *  *  * |  1  1  2  0  0 |  2  2 0
.o4.x .. .. ..    | 0  4 | 0 0  0  4  0 |  *  *  * 6  *  * |  0  0  0  4  0 |  0  0 4
.. .x .x .. ..    | 0  4 | 0 0  0  2  2 |  *  *  * * 48  * |  0  1  0  1  2 |  0  2 2
.. .. .x3.o ..    | 0  3 | 0 0  0  0  3 |  *  *  * *  * 32 |  0  0  2  0  2 |  1  2 1
------------------+------+--------------+------------------+----------------+--------
xo .. ox .. ..&#x  2  2 | 1 0  4  0  1 |  2  0  2 0  0  0 | 48  *  *  *  * |  2  0 0
.. xx ox .. ..&#x  2  4 | 0 1  4  2  2 |  0  2  2 0  1  0 |  * 48  *  *  * |  0  2 0
.. .. ox3oo ..&#x  1  3 | 0 0  3  0  3 |  0  0  3 0  0  1 |  *  * 64  *  * |  1  1 0
.o4.x .x .. ..     0  8 | 0 0  0  8  4 |  0  0  0 2  4  0 |  *  *  * 12  * |  0  0 2
.. .x .x3.o ..     0  6 | 0 0  0  3  6 |  0  0  0 0  3  2 |  *  *  *  * 32 |  0  1 1
------------------+------+--------------+------------------+----------------+--------
xo .. ox3oo ..&#x  2  3 | 1 0  6  0  3 |  3  0  6 0  0  1 |  3  0  2  0  0 | 32  * *
.. xx ox3oo ..&#x  2  6 | 0 1  6  3  6 |  0  3  6 0  3  2 |  0  3  2  0  1 |  * 32 *
.o4.x .x3.o ..     0 12 | 0 0  0 12 12 |  0  0  0 3 12  4 |  0  0  0  3  4 |  *  * 8

© 2004-2025
top of page