Acronym | tratap |
Name | triangular tiling antiprism |
© | |
Vertex figure |
© |
Confer |
|
External links |
This euclidean honeycomb uses trat (for cells) in the sense of an infinite horohedron.
The infinite stack of this slab, then blending out those horohedra, would either result in octet or in gytoh.
Incidence matrix according to Dynkin symbol
s2s6o3o (N → ∞) demi( . . . . ) | 2N ♦ 3 6 | 3 9 3 | 3 1 4 ----------------+----+-------+----------+------- s2s . . | 2 | 3N * | 0 4 0 | 2 0 2 sefa( . s6o . ) | 2 | * 6N | 1 1 1 | 1 1 1 ----------------+----+-------+----------+------- . s6o . | 3 | 0 3 | 2N * * | 1 1 0 sefa( s2s6o . ) | 3 | 2 1 | * 6N * | 1 0 1 sefa( . s6o3o ) | 3 | 0 3 | * * 2N | 0 1 1 ----------------+----+-------+----------+------- s2s6o . ♦ 6 | 6 6 | 2 6 0 | N * * . s6o3o ♦ N | 0 3N | N 0 N | * 2 * sefa( s2s6o3o ) ♦ 4 | 3 3 | 0 3 1 | * * 2N starting figure: x x6o3o
s2s3s6o (N → ∞) demi( . . . . ) | 6N ♦ 1 2 4 2 | 2 1 6 3 3 | 2 1 1 4 ----------------+----+--------------+-----------------+---------- s2s . . | 2 | 3N * * * | 0 0 4 0 0 | 2 0 0 2 s 2 s . | 2 | * 6N * * | 0 0 2 2 0 | 1 1 0 2 sefa( . s3s . ) | 2 | * * 12N * | 1 0 1 0 1 | 1 0 1 1 sefa( . . s6o ) | 2 | * * * 6N | 0 1 0 1 1 | 0 1 1 1 ----------------+----+--------------+-----------------+---------- . s3s . | 3 | 0 0 3 0 | 4N * * * * | 1 0 1 0 . . s6o | 3 | 0 0 0 3 | * 2N * * * | 0 1 1 0 sefa( s2s3s . ) | 3 | 1 1 1 0 | * * 12N * * | 1 0 0 1 sefa( s 2 s6o ) | 3 | 0 2 0 1 | * * * 6N * | 0 1 0 1 sefa( . s3s6o ) | 3 | 0 0 2 1 | * * * * 6N | 0 0 1 1 ----------------+----+--------------+-----------------+---------- s2s3s . ♦ 6 | 3 3 6 0 | 2 0 6 0 0 | 2N * * * s 2 s6o ♦ 6 | 0 6 0 6 | 0 2 0 6 0 | * N * * . s3s6o ♦ 3N | 0 0 6N 3N | 2N N 0 0 3N | * * 2 * sefa( s2s3s6o ) ♦ 4 | 1 2 2 1 | 0 0 2 1 1 | * * * 6N starting figure: x x3x6o
xo3ox3oo3*a&#x (N → ∞) → height = sqrt(2/3) = 0.816497 o.3o.3o.3*a | N * ♦ 6 3 0 | 3 3 6 3 0 0 | 1 3 3 1 0 .o3.o3.o3*a | * N ♦ 0 3 6 | 0 0 3 6 3 3 | 0 3 1 3 1 ---------------+-----+----------+---------------+---------- x. .. .. | 2 0 | 3N * * | 1 1 1 0 0 0 | 1 1 1 0 0 oo3oo3oo3*a&#x | 1 1 | * 3N * | 0 0 2 2 0 0 | 0 2 1 1 0 .. .x .. | 0 2 | * * 3N | 0 0 0 1 1 1 | 0 1 0 1 1 ---------------+-----+----------+---------------+---------- x.3o. .. | 3 0 | 3 0 0 | N * * * * * | 1 1 0 0 0 x. .. o.*a | 3 0 | 3 0 0 | * N * * * * | 1 0 1 0 0 xo .. .. &#x | 2 1 | 1 2 0 | * * 3N * * * | 0 1 1 0 0 .. ox .. &#x | 1 2 | 0 2 1 | * * * 3N * * | 0 1 0 1 0 .o3.x .. | 0 3 | 0 0 3 | * * * * N * | 0 1 0 0 1 .. .x3.o | 0 3 | 0 0 3 | * * * * * N | 0 0 0 1 1 ---------------+-----+----------+---------------+---------- x.3o.3o.3*a ♦ N 0 | 3N 0 0 | N N 0 0 0 0 | 1 * * * * xo3ox .. &#x ♦ 3 3 | 3 6 3 | 1 0 3 3 1 0 | * N * * * xo .. oo3*a&#x ♦ 3 1 | 3 3 0 | 0 1 3 0 0 0 | * * N * * .. ox3oo &#x ♦ 1 3 | 0 3 3 | 0 0 0 3 0 1 | * * * N * .o3.x3.o3*a ♦ 0 N | 0 0 3N | 0 0 0 0 N N | * * * * 1
or o.3o.3o.3*a & | 2N ♦ 6 3 | 3 3 9 | 1 3 4 -----------------+----+-------+----------+------- x. .. .. & | 2 | 6N * | 1 1 1 | 1 1 1 oo3oo3oo3*a&#x | 2 | * 3N | 0 0 4 | 0 2 2 -----------------+----+-------+----------+------- x.3o. .. & | 3 | 3 0 | 2N * * | 1 1 0 x. .. o.3*a & | 3 | 3 0 | * 2N * | 1 0 1 xo .. .. &#x & | 3 | 1 2 | * * 6N | 0 1 1 -----------------+----+-------+----------+------- x.3o.3o.3*a & ♦ N | 3N 0 | N N 0 | 2 * * xo3ox .. &#x ♦ 6 | 6 6 | 2 0 6 | * N * xo .. oo3*a&#x & ♦ 4 | 3 3 | 0 1 3 | * * 2N
© 2004-2025 | top of page |