Acronym tratap
Name triangular tiling antiprism
 
 ©
Vertex figure
 ©
Confer
related tesselations:
octet   gytoh  
External
links
wikipedia   polytopewiki

This euclidean honeycomb uses trat (for cells) in the sense of an infinite horohedron.

The infinite stack of this slab, then blending out those horohedra, would either result in octet or in gytoh.


Incidence matrix according to Dynkin symbol

s2s6o3o   (N → ∞)

demi( . . . . ) | 2N   3  6 |  3  9  3 | 3 1  4
----------------+----+-------+----------+-------
      s2s . .   |  2 | 3N  * |  0  4  0 | 2 0  2
sefa( . s6o . ) |  2 |  * 6N |  1  1  1 | 1 1  1
----------------+----+-------+----------+-------
      . s6o .   |  3 |  0  3 | 2N  *  * | 1 1  0
sefa( s2s6o . ) |  3 |  2  1 |  * 6N  * | 1 0  1
sefa( . s6o3o ) |  3 |  0  3 |  *  * 2N | 0 1  1
----------------+----+-------+----------+-------
      s2s6o .     6 |  6  6 |  2  6  0 | N *  *
      . s6o3o     N |  0 3N |  N  0  N | * 2  *
sefa( s2s6o3o )   4 |  3  3 |  0  3  1 | * * 2N

starting figure: x x6o3o

s2s3s6o   (N → ∞)

demi( . . . . ) | 6N   1  2   4  2 |  2  1   6  3  3 |  2 1 1  4
----------------+----+--------------+-----------------+----------
      s2s . .   |  2 | 3N  *   *  * |  0  0   4  0  0 |  2 0 0  2
      s 2 s .   |  2 |  * 6N   *  * |  0  0   2  2  0 |  1 1 0  2
sefa( . s3s . ) |  2 |  *  * 12N  * |  1  0   1  0  1 |  1 0 1  1
sefa( . . s6o ) |  2 |  *  *   * 6N |  0  1   0  1  1 |  0 1 1  1
----------------+----+--------------+-----------------+----------
      . s3s .   |  3 |  0  0   3  0 | 4N  *   *  *  * |  1 0 1  0
      . . s6o   |  3 |  0  0   0  3 |  * 2N   *  *  * |  0 1 1  0
sefa( s2s3s . ) |  3 |  1  1   1  0 |  *  * 12N  *  * |  1 0 0  1
sefa( s 2 s6o ) |  3 |  0  2   0  1 |  *  *   * 6N  * |  0 1 0  1
sefa( . s3s6o ) |  3 |  0  0   2  1 |  *  *   *  * 6N |  0 0 1  1
----------------+----+--------------+-----------------+----------
      s2s3s .     6 |  3  3   6  0 |  2  0   6  0  0 | 2N * *  *
      s 2 s6o     6 |  0  6   0  6 |  0  2   0  6  0 |  * N *  *
      . s3s6o    3N |  0  0  6N 3N | 2N  N   0  0 3N |  * * 2  *
sefa( s2s3s6o )   4 |  1  2   2  1 |  0  0   2  1  1 |  * * * 6N

starting figure: x x3x6o

xo3ox3oo3*a&#x   (N → ∞) → height = sqrt(2/3) = 0.816497

o.3o.3o.3*a    | N *   6  3  0 | 3 3  6  3 0 0 | 1 3 3 1 0
.o3.o3.o3*a    | * N   0  3  6 | 0 0  3  6 3 3 | 0 3 1 3 1
---------------+-----+----------+---------------+----------
x. .. ..       | 2 0 | 3N  *  * | 1 1  1  0 0 0 | 1 1 1 0 0
oo3oo3oo3*a&#x | 1 1 |  * 3N  * | 0 0  2  2 0 0 | 0 2 1 1 0
.. .x ..       | 0 2 |  *  * 3N | 0 0  0  1 1 1 | 0 1 0 1 1
---------------+-----+----------+---------------+----------
x.3o. ..       | 3 0 |  3  0  0 | N *  *  * * * | 1 1 0 0 0
x. .. o.*a     | 3 0 |  3  0  0 | * N  *  * * * | 1 0 1 0 0
xo .. ..   &#x | 2 1 |  1  2  0 | * * 3N  * * * | 0 1 1 0 0
.. ox ..   &#x | 1 2 |  0  2  1 | * *  * 3N * * | 0 1 0 1 0
.o3.x ..       | 0 3 |  0  0  3 | * *  *  * N * | 0 1 0 0 1
.. .x3.o       | 0 3 |  0  0  3 | * *  *  * * N | 0 0 0 1 1
---------------+-----+----------+---------------+----------
x.3o.3o.3*a     N 0 | 3N  0  0 | N N  0  0 0 0 | 1 * * * *
xo3ox ..   &#x  3 3 |  3  6  3 | 1 0  3  3 1 0 | * N * * *
xo .. oo3*a&#x  3 1 |  3  3  0 | 0 1  3  0 0 0 | * * N * *
.. ox3oo   &#x  1 3 |  0  3  3 | 0 0  0  3 0 1 | * * * N *
.o3.x3.o3*a     0 N |  0  0 3N | 0 0  0  0 N N | * * * * 1
or
o.3o.3o.3*a    & | 2N   6  3 |  3  3  9 | 1 3  4
-----------------+----+-------+----------+-------
x. .. ..       & |  2 | 6N  * |  1  1  1 | 1 1  1
oo3oo3oo3*a&#x   |  2 |  * 3N |  0  0  4 | 0 2  2
-----------------+----+-------+----------+-------
x.3o. ..       & |  3 |  3  0 | 2N  *  * | 1 1  0
x. .. o.3*a    & |  3 |  3  0 |  * 2N  * | 1 0  1
xo .. ..   &#x & |  3 |  1  2 |  *  * 6N | 0 1  1
-----------------+----+-------+----------+-------
x.3o.3o.3*a    &   N | 3N  0 |  N  N  0 | 2 *  *
xo3ox ..   &#x     6 |  6  6 |  2  0  6 | * N  *
xo .. oo3*a&#x &   4 |  3  3 |  0  1  3 | * * 2N

© 2004-2025
top of page