Acronym | hagirco (old: higgirco) |
Name | hexagon great-rhombicuboctahedron duoprism |
Circumradius | sqrt[17+6 sqrt(2)]/2 = 2.524147 |
Face vector | 288, 720, 636, 234, 32 |
Confer |
|
External links |
As abstract polyteron hagirco is isomorphic to haquitco, thereby replacing the octagons by octagrams, resp. replacing girco by quitco and op by stop, resp. replacing hodip by histodip and gircope by quitcope.
Incidence matrix according to Dynkin symbol
x6o x3x4x . . . . . | 288 | 2 1 1 1 | 1 2 2 2 1 1 1 | 1 1 1 2 2 2 1 | 1 1 1 2 ----------+-----+-----------------+-------------------------+---------------------+--------- x . . . . | 2 | 288 * * * | 1 1 1 1 0 0 0 | 1 1 1 1 1 1 0 | 1 1 1 1 . . x . . | 2 | * 144 * * | 0 2 0 0 1 1 0 | 1 0 0 2 2 0 1 | 1 1 0 2 . . . x . | 2 | * * 144 * | 0 0 2 0 1 0 1 | 0 1 0 2 0 2 1 | 1 0 1 2 . . . . x | 2 | * * * 144 | 0 0 0 2 0 1 1 | 0 0 1 0 2 2 1 | 0 1 1 2 ----------+-----+-----------------+-------------------------+---------------------+--------- x6o . . . | 6 | 6 0 0 0 | 48 * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 x . x . . | 4 | 2 2 0 0 | * 144 * * * * * | 1 0 0 1 1 0 0 | 1 1 0 1 x . . x . | 4 | 2 0 2 0 | * * 144 * * * * | 0 1 0 1 0 1 0 | 1 0 1 1 x . . . x | 4 | 2 0 0 2 | * * * 144 * * * | 0 0 1 0 1 1 0 | 0 1 1 1 . . x3x . | 6 | 0 3 3 0 | * * * * 48 * * | 0 0 0 2 0 0 1 | 1 0 0 2 . . x . x | 4 | 0 2 0 2 | * * * * * 72 * | 0 0 0 0 2 0 1 | 0 1 0 2 . . . x4x | 8 | 0 0 4 4 | * * * * * * 36 | 0 0 0 0 0 2 1 | 0 0 1 2 ----------+-----+-----------------+-------------------------+---------------------+--------- x6o x . . ♦ 12 | 12 6 0 0 | 2 6 0 0 0 0 0 | 24 * * * * * * | 1 1 0 0 x6o . x . ♦ 12 | 12 0 6 0 | 2 0 6 0 0 0 0 | * 24 * * * * * | 1 0 1 0 x6o . . x ♦ 12 | 12 0 0 6 | 2 0 0 6 0 0 0 | * * 24 * * * * | 0 1 1 0 x . x3x . ♦ 12 | 6 6 6 0 | 0 3 3 0 2 0 0 | * * * 48 * * * | 1 0 0 1 x . x . x ♦ 8 | 4 4 0 4 | 0 2 0 2 0 2 0 | * * * * 72 * * | 0 1 0 1 x . . x4x ♦ 16 | 8 0 8 8 | 0 0 4 4 0 0 2 | * * * * * 36 * | 0 0 1 1 . . x3x4x ♦ 48 | 0 24 24 24 | 0 0 0 0 8 12 6 | * * * * * * 6 | 0 0 0 2 ----------+-----+-----------------+-------------------------+---------------------+--------- x6o x3x . ♦ 36 | 36 18 18 0 | 6 18 18 0 6 0 0 | 3 3 0 6 0 0 0 | 8 * * * x6o x . x ♦ 24 | 24 12 0 12 | 4 12 0 12 0 6 0 | 2 0 2 0 6 0 0 | * 12 * * x6o . x4x ♦ 48 | 48 0 24 24 | 8 0 24 24 0 0 6 | 0 4 4 0 0 6 0 | * * 6 * x . x3x4x ♦ 96 | 48 48 48 48 | 0 24 24 24 16 24 12 | 0 0 0 8 12 6 2 | * * * 6
x3x x3x4x . . . . . | 288 | 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 ----------+-----+---------------------+-------------------------------+------------------------------+----------- x . . . . | 2 | 144 * * * * | 1 1 1 1 0 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 | 1 1 1 1 0 . x . . . | 2 | * 144 * * * | 1 0 0 0 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 0 | 1 1 1 0 1 . . x . . | 2 | * * 144 * * | 0 1 0 0 1 0 0 1 1 0 | 1 0 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . x . | 2 | * * * 144 * | 0 0 1 0 0 1 0 1 0 1 | 0 1 0 1 0 1 1 0 1 1 | 1 0 1 1 1 . . . . x | 2 | * * * * 144 | 0 0 0 1 0 0 1 0 1 1 | 0 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 ----------+-----+---------------------+-------------------------------+------------------------------+----------- x3x . . . | 6 | 3 3 0 0 0 | 48 * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 0 2 0 0 | * 72 * * * * * * * * | 1 0 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 0 2 0 | * * 72 * * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 0 2 | * * * 72 * * * * * * | 0 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . x x . . | 4 | 0 2 2 0 0 | * * * * 72 * * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . x . | 4 | 0 2 0 2 0 | * * * * * 72 * * * * | 0 1 0 0 0 0 1 0 1 0 | 1 0 1 0 1 . x . . x | 4 | 0 2 0 0 2 | * * * * * * 72 * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x3x . | 6 | 0 0 3 3 0 | * * * * * * * 48 * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . x | 4 | 0 0 2 0 2 | * * * * * * * * 72 * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . x4x | 8 | 0 0 0 4 4 | * * * * * * * * * 36 | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ----------+-----+---------------------+-------------------------------+------------------------------+----------- x3x x . . ♦ 12 | 6 6 6 0 0 | 2 3 0 0 3 0 0 0 0 0 | 24 * * * * * * * * * | 1 1 0 0 0 x3x . x . ♦ 12 | 6 6 0 6 0 | 2 0 3 0 0 3 0 0 0 0 | * 24 * * * * * * * * | 1 0 1 0 0 x3x . . x ♦ 12 | 6 6 0 0 6 | 2 0 0 3 0 0 3 0 0 0 | * * 24 * * * * * * * | 0 1 1 0 0 x . x3x . ♦ 12 | 6 0 6 6 0 | 0 3 3 0 0 0 0 2 0 0 | * * * 24 * * * * * * | 1 0 0 1 0 x . x . x ♦ 8 | 4 0 4 0 4 | 0 2 0 2 0 0 0 0 2 0 | * * * * 36 * * * * * | 0 1 0 1 0 x . . x4x ♦ 16 | 8 0 0 8 8 | 0 0 4 4 0 0 0 0 0 2 | * * * * * 18 * * * * | 0 0 1 1 0 . x x3x . ♦ 12 | 0 6 6 6 0 | 0 0 0 0 3 3 0 2 0 0 | * * * * * * 24 * * * | 1 0 0 0 1 . x x . x ♦ 8 | 0 4 4 0 4 | 0 0 0 0 2 0 2 0 2 0 | * * * * * * * 36 * * | 0 1 0 0 1 . x . x4x ♦ 16 | 0 8 0 8 8 | 0 0 0 0 0 4 4 0 0 2 | * * * * * * * * 18 * | 0 0 1 0 1 . . x3x4x ♦ 48 | 0 0 24 24 24 | 0 0 0 0 0 0 0 8 12 6 | * * * * * * * * * 6 | 0 0 0 1 1 ----------+-----+---------------------+-------------------------------+------------------------------+----------- x3x x3x . ♦ 36 | 18 18 18 18 0 | 6 9 9 0 9 9 0 6 0 0 | 3 3 0 3 0 0 3 0 0 0 | 8 * * * * x3x x . x ♦ 24 | 12 12 12 0 12 | 4 6 0 6 6 0 6 0 6 0 | 2 0 2 0 3 0 0 3 0 0 | * 12 * * * x3x . x4x ♦ 48 | 24 24 0 24 24 | 8 0 12 12 0 12 12 0 0 6 | 0 4 4 0 0 3 0 0 3 0 | * * 6 * * x . x3x4x ♦ 96 | 48 0 48 48 48 | 0 24 24 24 0 0 0 16 24 12 | 0 0 0 8 12 6 0 0 0 2 | * * * 3 * . x x3x4x ♦ 96 | 0 48 48 48 48 | 0 0 0 0 24 24 24 16 24 12 | 0 0 0 0 0 0 8 12 6 2 | * * * * 3
© 2004-2025 | top of page |