Acronym haquitco
Name hexagon quasitruncated-cuboctahedron duoprism
Circumradius sqrt[17-6 sqrt(2)]/2 = 1.459000

As abstract polyteron haquitco is isomorphic to hagirco, thereby replacing the octagrams by octagons, resp. replacing quitco by girco and stop by op, resp. replacing histodip by hodip and quitcope by gircope.


Incidence matrix according to Dynkin symbol

x6o x3x4/3x

. . . .   . | 288 |   2   1   1   1 |  1   2   2   2  1  1  1 |  1  1  1  2  2  2 1 | 1  1 1 2
------------+-----+-----------------+-------------------------+---------------------+---------
x . . .   . |   2 | 288   *   *   * |  1   1   1   1  0  0  0 |  1  1  1  1  1  1 0 | 1  1 1 1
. . x .   . |   2 |   * 144   *   * |  0   2   0   0  1  1  0 |  1  0  0  2  2  0 1 | 1  1 0 2
. . . x   . |   2 |   *   * 144   * |  0   0   2   0  1  0  1 |  0  1  0  2  0  2 1 | 1  0 1 2
. . . .   x |   2 |   *   *   * 144 |  0   0   0   2  0  1  1 |  0  0  1  0  2  2 1 | 0  1 1 2
------------+-----+-----------------+-------------------------+---------------------+---------
x6o . .   . |   6 |   6   0   0   0 | 48   *   *   *  *  *  * |  1  1  1  0  0  0 0 | 1  1 1 0
x . x .   . |   4 |   2   2   0   0 |  * 144   *   *  *  *  * |  1  0  0  1  1  0 0 | 1  1 0 1
x . . x   . |   4 |   2   0   2   0 |  *   * 144   *  *  *  * |  0  1  0  1  0  1 0 | 1  0 1 1
x . . .   x |   4 |   2   0   0   2 |  *   *   * 144  *  *  * |  0  0  1  0  1  1 0 | 0  1 1 1
. . x3x   . |   6 |   0   3   3   0 |  *   *   *   * 48  *  * |  0  0  0  2  0  0 1 | 1  0 0 2
. . x .   x |   4 |   0   2   0   2 |  *   *   *   *  * 72  * |  0  0  0  0  2  0 1 | 0  1 0 2
. . . x4/3x |   8 |   0   0   4   4 |  *   *   *   *  *  * 36 |  0  0  0  0  0  2 1 | 0  0 1 2
------------+-----+-----------------+-------------------------+---------------------+---------
x6o x .   .   12 |  12   6   0   0 |  2   6   0   0  0  0  0 | 24  *  *  *  *  * * | 1  1 0 0
x6o . x   .   12 |  12   0   6   0 |  2   0   6   0  0  0  0 |  * 24  *  *  *  * * | 1  0 1 0
x6o . .   x   12 |  12   0   0   6 |  2   0   0   6  0  0  0 |  *  * 24  *  *  * * | 0  1 1 0
x . x3x   .   12 |   6   6   6   0 |  0   3   3   0  2  0  0 |  *  *  * 48  *  * * | 1  0 0 1
x . x .   x    8 |   4   4   0   4 |  0   2   0   2  0  2  0 |  *  *  *  * 72  * * | 0  1 0 1
x . . x4/3x   16 |   8   0   8   8 |  0   0   4   4  0  0  2 |  *  *  *  *  * 36 * | 0  0 1 1
. . x3x4/3x   48 |   0  24  24  24 |  0   0   0   0  8 12  6 |  *  *  *  *  *  * 6 | 0  0 0 2
------------+-----+-----------------+-------------------------+---------------------+---------
x6o x3x   .   36 |  36  18  18   0 |  6  18  18   0  6  0  0 |  3  3  0  6  0  0 0 | 8  * * *
x6o x .   x   24 |  24  12   0  12 |  4  12   0  12  0  6  0 |  2  0  2  0  6  0 0 | * 12 * *
x6o . x4/3x   48 |  48   0  24  24 |  8   0  24  24  0  0  6 |  0  4  4  0  0  6 0 | *  * 6 *
x . x3x4/3x   96 |  48  48  48  48 |  0  24  24  24 16 24 12 |  0  0  0  8 12  6 2 | *  * * 6

x3x x3x4/3x

. . . .   . | 288 |   1   1   1   1   1 |  1  1  1  1  1  1  1  1  1  1 |  1  1  1  1  1  1  1  1  1 1 | 1  1 1 1 1
------------+-----+---------------------+-------------------------------+------------------------------+-----------
x . . .   . |   2 | 144   *   *   *   * |  1  1  1  1  0  0  0  0  0  0 |  1  1  1  1  1  1  0  0  0 0 | 1  1 1 1 0
. x . .   . |   2 |   * 144   *   *   * |  1  0  0  0  1  1  1  0  0  0 |  1  1  1  0  0  0  1  1  1 0 | 1  1 1 0 1
. . x .   . |   2 |   *   * 144   *   * |  0  1  0  0  1  0  0  1  1  0 |  1  0  0  1  1  0  1  1  0 1 | 1  1 0 1 1
. . . x   . |   2 |   *   *   * 144   * |  0  0  1  0  0  1  0  1  0  1 |  0  1  0  1  0  1  1  0  1 1 | 1  0 1 1 1
. . . .   x |   2 |   *   *   *   * 144 |  0  0  0  1  0  0  1  0  1  1 |  0  0  1  0  1  1  0  1  1 1 | 0  1 1 1 1
------------+-----+---------------------+-------------------------------+------------------------------+-----------
x3x . .   . |   6 |   3   3   0   0   0 | 48  *  *  *  *  *  *  *  *  * |  1  1  1  0  0  0  0  0  0 0 | 1  1 1 0 0
x . x .   . |   4 |   2   0   2   0   0 |  * 72  *  *  *  *  *  *  *  * |  1  0  0  1  1  0  0  0  0 0 | 1  1 0 1 0
x . . x   . |   4 |   2   0   0   2   0 |  *  * 72  *  *  *  *  *  *  * |  0  1  0  1  0  1  0  0  0 0 | 1  0 1 1 0
x . . .   x |   4 |   2   0   0   0   2 |  *  *  * 72  *  *  *  *  *  * |  0  0  1  0  1  1  0  0  0 0 | 0  1 1 1 0
. x x .   . |   4 |   0   2   2   0   0 |  *  *  *  * 72  *  *  *  *  * |  1  0  0  0  0  0  1  1  0 0 | 1  1 0 0 1
. x . x   . |   4 |   0   2   0   2   0 |  *  *  *  *  * 72  *  *  *  * |  0  1  0  0  0  0  1  0  1 0 | 1  0 1 0 1
. x . .   x |   4 |   0   2   0   0   2 |  *  *  *  *  *  * 72  *  *  * |  0  0  1  0  0  0  0  1  1 0 | 0  1 1 0 1
. . x3x   . |   6 |   0   0   3   3   0 |  *  *  *  *  *  *  * 48  *  * |  0  0  0  1  0  0  1  0  0 1 | 1  0 0 1 1
. . x .   x |   4 |   0   0   2   0   2 |  *  *  *  *  *  *  *  * 72  * |  0  0  0  0  1  0  0  1  0 1 | 0  1 0 1 1
. . . x4/3x |   8 |   0   0   0   4   4 |  *  *  *  *  *  *  *  *  * 36 |  0  0  0  0  0  1  0  0  1 1 | 0  0 1 1 1
------------+-----+---------------------+-------------------------------+------------------------------+-----------
x3x x .   .   12 |   6   6   6   0   0 |  2  3  0  0  3  0  0  0  0  0 | 24  *  *  *  *  *  *  *  * * | 1  1 0 0 0
x3x . x   .   12 |   6   6   0   6   0 |  2  0  3  0  0  3  0  0  0  0 |  * 24  *  *  *  *  *  *  * * | 1  0 1 0 0
x3x . .   x   12 |   6   6   0   0   6 |  2  0  0  3  0  0  3  0  0  0 |  *  * 24  *  *  *  *  *  * * | 0  1 1 0 0
x . x3x   .   12 |   6   0   6   6   0 |  0  3  3  0  0  0  0  2  0  0 |  *  *  * 24  *  *  *  *  * * | 1  0 0 1 0
x . x .   x    8 |   4   0   4   0   4 |  0  2  0  2  0  0  0  0  2  0 |  *  *  *  * 36  *  *  *  * * | 0  1 0 1 0
x . . x4/3x   16 |   8   0   0   8   8 |  0  0  4  4  0  0  0  0  0  2 |  *  *  *  *  * 18  *  *  * * | 0  0 1 1 0
. x x3x   .   12 |   0   6   6   6   0 |  0  0  0  0  3  3  0  2  0  0 |  *  *  *  *  *  * 24  *  * * | 1  0 0 0 1
. x x .   x    8 |   0   4   4   0   4 |  0  0  0  0  2  0  2  0  2  0 |  *  *  *  *  *  *  * 36  * * | 0  1 0 0 1
. x . x4/3x   16 |   0   8   0   8   8 |  0  0  0  0  0  4  4  0  0  2 |  *  *  *  *  *  *  *  * 18 * | 0  0 1 0 1
. . x3x4/3x   48 |   0   0  24  24  24 |  0  0  0  0  0  0  0  8 12  6 |  *  *  *  *  *  *  *  *  * 6 | 0  0 0 1 1
------------+-----+---------------------+-------------------------------+------------------------------+-----------
x3x x3x   .   36 |  18  18  18  18   0 |  6  9  9  0  9  9  0  6  0  0 |  3  3  0  3  0  0  3  0  0 0 | 8  * * * *
x3x x .   x   24 |  12  12  12   0  12 |  4  6  0  6  6  0  6  0  6  0 |  2  0  2  0  3  0  0  3  0 0 | * 12 * * *
x3x . x4/3x   48 |  24  24   0  24  24 |  8  0 12 12  0 12 12  0  0  6 |  0  4  4  0  0  3  0  0  3 0 | *  * 6 * *
x . x3x4/3x   96 |  48   0  48  48  48 |  0 24 24 24  0  0  0 16 24 12 |  0  0  0  8 12  6  0  0  0 2 | *  * * 3 *
. x x3x4/3x   96 |   0  48  48  48  48 |  0  0  0  0 24 24 24 16 24 12 |  0  0  0  0  0  0  8 12  6 2 | *  * * * 3

© 2004-2019
top of page