Acronym n,girco-dip
Name n-gon - great-rhombicuboctahedron duoprism
Circumradius sqrt[(13+6 sqrt(2))/4+1/(4 sin2(π/n))]
Face vector 48n, 120n, 98n+48, 27n+72, n+26
Especially tragirco (n=3)   squagirco (n=4)   hagirco (n=6)   ogirco (n=8)  
Confer
general polytopal classes:
Wythoffian polytera  

Incidence matrix according to Dynkin symbol

xno x3x4x   (n>2)

. . . . . | 48n |   2   1   1   1 |  1   2   2   2  1   1  1 |  1  1  1  2   2  2 1 | 1  1 1 2
----------+-----+-----------------+--------------------------+----------------------+---------
x . . . . |   2 | 48n   *   *   * |  1   1   1   1  0   0  0 |  1  1  1  1   1  1 0 | 1  1 1 1
. . x . . |   2 |   * 24n   *   * |  0   2   0   0  1   1  0 |  1  0  0  2   2  0 1 | 1  1 0 2
. . . x . |   2 |   *   * 24n   * |  0   0   2   0  1   0  1 |  0  1  0  2   0  2 1 | 1  0 1 2
. . . . x |   2 |   *   *   * 24n |  0   0   0   2  0   1  1 |  0  0  1  0   2  2 1 | 0  1 1 2
----------+-----+-----------------+--------------------------+----------------------+---------
xno . . . |   n |   n   0   0   0 | 48   *   *   *  *   *  * |  1  1  1  0   0  0 0 | 1  1 1 0
x . x . . |   4 |   2   2   0   0 |  * 24n   *   *  *   *  * |  1  0  0  1   1  0 0 | 1  1 0 1
x . . x . |   4 |   2   0   2   0 |  *   * 24n   *  *   *  * |  0  1  0  1   0  1 0 | 1  0 1 1
x . . . x |   4 |   2   0   0   2 |  *   *   * 24n  *   *  * |  0  0  1  0   1  1 0 | 0  1 1 1
. . x3x . |   6 |   0   3   3   0 |  *   *   *   * 8n   *  * |  0  0  0  2   0  0 1 | 1  0 0 2
. . x . x |   4 |   0   2   0   2 |  *   *   *   *  * 12n  * |  0  0  0  0   2  0 1 | 0  1 0 2
. . . x4x |   8 |   0   0   4   4 |  *   *   *   *  *   * 6n |  0  0  0  0   0  2 1 | 0  0 1 2
----------+-----+-----------------+--------------------------+----------------------+---------
xno x . .   2n |  2n   n   0   0 |  2   n   0   0  0   0  0 | 24  *  *  *   *  * * | 1  1 0 0
xno . x .   2n |  2n   0   n   0 |  2   0   n   0  0   0  0 |  * 24  *  *   *  * * | 1  0 1 0
xno . . x   2n |  2n   0   0   n |  2   0   0   n  0   0  0 |  *  * 24  *   *  * * | 0  1 1 0
x . x3x .   12 |   6   6   6   0 |  0   3   3   0  2   0  0 |  *  *  * 8n   *  * * | 1  0 0 1
x . x . x    8 |   4   4   0   4 |  0   2   0   2  0   2  0 |  *  *  *  * 12n  * * | 0  1 0 1
x . . x4x   16 |   8   0   8   8 |  0   0   4   4  0   0  2 |  *  *  *  *   * 6n * | 0  0 1 1
. . x3x4x   48 |   0  24  24  24 |  0   0   0   0  8  12  6 |  *  *  *  *   *  * n | 0  0 0 2
----------+-----+-----------------+--------------------------+----------------------+---------
xno x3x .   6n |  6n  3n  3n   0 |  6  3n  3n   0  n   0  0 |  3  3  0  n   0  0 0 | 8  * * *
xno x . x   4n |  4n  2n   0  2n |  4  2n   0  2n  0   n  0 |  2  0  2  0   n  0 0 | * 12 * *
xno . x4x   8n |  8n   0  4n  4n |  8   0  4n  4n  0   0  n |  0  4  4  0   0  n 0 | *  * 6 *
x . x3x4x   96 |  48  48  48  48 |  0  24  24  24 16  24 12 |  0  0  0  8  12  6 2 | *  * * n

© 2004-2025
top of page