Acronym captint
Name celliprismatotruncated penteractitriacontiditeron,
steriruncitruncated penteract,
steriruncitruncated pentacross
Field of sections
` ©`
Vertex figure
` ©    ©`
Coordinates ((1+3 sqrt(2))/2, (1+2 sqrt(2))/2, (1+sqrt(2))/2, (1+sqrt(2))/2, 1/2)   & all permutations, all changes of sign
General of army (is itself convex)
Colonel of regiment (is itself locally convex – uniform polyteral members:
 by cells: gidpith hodip pittip prip proh siphado ticcup tuttip sircaptint 10 0 32 0 0 10 40 80 captint 0 80 0 32 10 0 40 80
& others)
External

As abstract polytope captint is isomorphic to quicpatint, thereby replacing octagons by octagrams, resp. op by stop and tic by quith, resp. hodip by histodip, ticcup by quithip, and proh by quiproh.

Incidence matrix according to Dynkin symbol

```x3x3o3x4x

. . . . . | 1920 |   1    2    2   1 |   2   2   1   1   2   2   1   2 |   1   2   2   1   2   1   1   2  1 |  1  1  2  1  1
----------+------+-------------------+---------------------------------+------------------------------------+---------------
x . . . . |    2 | 960    *    *   * |   2   2   1   0   0   0   0   0 |   1   2   2   1   2   0   0   0  0 |  1  1  2  1  0
. x . . . |    2 |   * 1920    *   * |   1   0   0   1   1   1   0   0 |   1   1   1   0   0   1   1   1  0 |  1  1  1  0  1
. . . x . |    2 |   *    * 1920   * |   0   1   0   0   1   0   1   1 |   0   1   0   1   1   1   0   1  1 |  1  0  1  1  1
. . . . x |    2 |   *    *    * 960 |   0   0   1   0   0   2   0   2 |   0   0   2   0   2   0   1   2  1 |  0  1  2  1  1
----------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x . . . |    6 |   3    3    0   0 | 640   *   *   *   *   *   *   * |   1   1   1   0   0   0   0   0  0 |  1  1  1  0  0
x . . x . |    4 |   2    0    2   0 |   * 960   *   *   *   *   *   * |   0   1   0   1   1   0   0   0  0 |  1  0  1  1  0
x . . . x |    4 |   2    0    0   2 |   *   * 480   *   *   *   *   * |   0   0   2   0   2   0   0   0  0 |  0  1  2  1  0
. x3o . . |    3 |   0    3    0   0 |   *   *   * 640   *   *   *   * |   1   0   0   0   0   1   1   0  0 |  1  1  0  0  1
. x . x . |    4 |   0    2    2   0 |   *   *   *   * 960   *   *   * |   0   1   0   0   0   1   0   1  0 |  1  0  1  0  1
. x . . x |    4 |   0    2    0   2 |   *   *   *   *   * 960   *   * |   0   0   1   0   0   0   1   1  0 |  0  1  1  0  1
. . o3x . |    3 |   0    0    3   0 |   *   *   *   *   *   * 640   * |   0   0   0   1   0   1   0   0  1 |  1  0  0  1  1
. . . x4x |    8 |   0    0    4   4 |   *   *   *   *   *   *   * 480 |   0   0   0   0   1   0   0   1  1 |  0  0  1  1  1
----------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x3o . . ♦   12 |   6   12    0   0 |   4   0   0   4   0   0   0   0 | 160   *   *   *   *   *   *   *  * |  1  1  0  0  0
x3x . x . ♦   12 |   6    6    6   0 |   2   3   0   0   3   0   0   0 |   * 320   *   *   *   *   *   *  * |  1  0  1  0  0
x3x . . x ♦   12 |   6    6    0   6 |   2   0   3   0   0   3   0   0 |   *   * 320   *   *   *   *   *  * |  0  1  1  0  0
x . o3x . ♦    6 |   3    0    6   0 |   0   3   0   0   0   0   2   0 |   *   *   * 320   *   *   *   *  * |  1  0  0  1  0
x . . x4x ♦   16 |   8    0    8   8 |   0   4   4   0   0   0   0   2 |   *   *   *   * 240   *   *   *  * |  0  0  1  1  0
. x3o3x . ♦   12 |   0   12   12   0 |   0   0   0   4   6   0   4   0 |   *   *   *   *   * 160   *   *  * |  1  0  0  0  1
. x3o . x ♦    6 |   0    6    0   3 |   0   0   0   2   0   3   0   0 |   *   *   *   *   *   * 320   *  * |  0  1  0  0  1
. x . x4x ♦   16 |   0    8    8   8 |   0   0   0   0   4   4   0   2 |   *   *   *   *   *   *   * 240  * |  0  0  1  0  1
. . o3x4x ♦   24 |   0    0   24  12 |   0   0   0   0   0   0   8   6 |   *   *   *   *   *   *   *   * 80 |  0  0  0  1  1
----------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x3o3x . ♦   60 |  30   60   60   0 |  20  30   0  20  30   0  20   0 |   5  10   0  10   0   5   0   0  0 | 32  *  *  *  *
x3x3o . x ♦   24 |  12   24    0  12 |   8   0   6   8   0  12   0   0 |   2   0   4   0   0   0   4   0  0 |  * 80  *  *  *
x3x . x4x ♦   48 |  24   24   24  24 |   8  12  12   0  12  12   0   6 |   0   4   4   0   3   0   0   3  0 |  *  * 80  *  *
x . o3x4x ♦   48 |  24    0   48  24 |   0  24  12   0   0   0  16  13 |   0   0   0   8   6   0   0   0  2 |  *  *  * 40  *
. x3o3x4x ♦  192 |   0  192  192  96 |   0   0   0  64  96  96  64  48 |   0   0   0   0   0  16  32  24  8 |  *  *  *  * 10

snubbed forms: x3x3o3x4s
```