Acronym captint
Name celliprismatotruncated penteractitriacontiditeron,
steriruncitruncated penteract,
steriruncitruncated pentacross
Field of sections
 ©
Circumradius sqrt[35+14 sqrt(2)]/2 = 3.701317
Vertex figure
 ©    ©
Coordinates ((1+3 sqrt(2))/2, (1+2 sqrt(2))/2, (1+sqrt(2))/2, (1+sqrt(2))/2, 1/2)   & all permutations, all changes of sign
General of army (is itself convex)
Colonel of regiment (is itself locally convex – uniform polyteral members:
by cells: gidpith hodip pittip prip proh siphado ticcup tuttip
sircaptint 1003200104080
captint 0800321004080
& others)
Face vector 1920, 5760, 5760, 2160, 242
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude   wikipedia   polytopewiki  

As abstract polytope captint is isomorphic to quicpatint, thereby replacing octagons by octagrams, resp. op by stop and tic by quith, resp. hodip by histodip, ticcup by quithip, and proh by quiproh.


Incidence matrix according to Dynkin symbol

x3x3o3x4x

. . . . . | 1920 |   1    2    2   1 |   2   2   1   1   2   2   1   2 |   1   2   2   1   2   1   1   2  1 |  1  1  2  1  1
----------+------+-------------------+---------------------------------+------------------------------------+---------------
x . . . . |    2 | 960    *    *   * |   2   2   1   0   0   0   0   0 |   1   2   2   1   2   0   0   0  0 |  1  1  2  1  0
. x . . . |    2 |   * 1920    *   * |   1   0   0   1   1   1   0   0 |   1   1   1   0   0   1   1   1  0 |  1  1  1  0  1
. . . x . |    2 |   *    * 1920   * |   0   1   0   0   1   0   1   1 |   0   1   0   1   1   1   0   1  1 |  1  0  1  1  1
. . . . x |    2 |   *    *    * 960 |   0   0   1   0   0   2   0   2 |   0   0   2   0   2   0   1   2  1 |  0  1  2  1  1
----------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x . . . |    6 |   3    3    0   0 | 640   *   *   *   *   *   *   * |   1   1   1   0   0   0   0   0  0 |  1  1  1  0  0
x . . x . |    4 |   2    0    2   0 |   * 960   *   *   *   *   *   * |   0   1   0   1   1   0   0   0  0 |  1  0  1  1  0
x . . . x |    4 |   2    0    0   2 |   *   * 480   *   *   *   *   * |   0   0   2   0   2   0   0   0  0 |  0  1  2  1  0
. x3o . . |    3 |   0    3    0   0 |   *   *   * 640   *   *   *   * |   1   0   0   0   0   1   1   0  0 |  1  1  0  0  1
. x . x . |    4 |   0    2    2   0 |   *   *   *   * 960   *   *   * |   0   1   0   0   0   1   0   1  0 |  1  0  1  0  1
. x . . x |    4 |   0    2    0   2 |   *   *   *   *   * 960   *   * |   0   0   1   0   0   0   1   1  0 |  0  1  1  0  1
. . o3x . |    3 |   0    0    3   0 |   *   *   *   *   *   * 640   * |   0   0   0   1   0   1   0   0  1 |  1  0  0  1  1
. . . x4x |    8 |   0    0    4   4 |   *   *   *   *   *   *   * 480 |   0   0   0   0   1   0   0   1  1 |  0  0  1  1  1
----------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x3o . .    12 |   6   12    0   0 |   4   0   0   4   0   0   0   0 | 160   *   *   *   *   *   *   *  * |  1  1  0  0  0
x3x . x .    12 |   6    6    6   0 |   2   3   0   0   3   0   0   0 |   * 320   *   *   *   *   *   *  * |  1  0  1  0  0
x3x . . x    12 |   6    6    0   6 |   2   0   3   0   0   3   0   0 |   *   * 320   *   *   *   *   *  * |  0  1  1  0  0
x . o3x .     6 |   3    0    6   0 |   0   3   0   0   0   0   2   0 |   *   *   * 320   *   *   *   *  * |  1  0  0  1  0
x . . x4x    16 |   8    0    8   8 |   0   4   4   0   0   0   0   2 |   *   *   *   * 240   *   *   *  * |  0  0  1  1  0
. x3o3x .    12 |   0   12   12   0 |   0   0   0   4   6   0   4   0 |   *   *   *   *   * 160   *   *  * |  1  0  0  0  1
. x3o . x     6 |   0    6    0   3 |   0   0   0   2   0   3   0   0 |   *   *   *   *   *   * 320   *  * |  0  1  0  0  1
. x . x4x    16 |   0    8    8   8 |   0   0   0   0   4   4   0   2 |   *   *   *   *   *   *   * 240  * |  0  0  1  0  1
. . o3x4x    24 |   0    0   24  12 |   0   0   0   0   0   0   8   6 |   *   *   *   *   *   *   *   * 80 |  0  0  0  1  1
----------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x3o3x .    60 |  30   60   60   0 |  20  30   0  20  30   0  20   0 |   5  10   0  10   0   5   0   0  0 | 32  *  *  *  *
x3x3o . x    24 |  12   24    0  12 |   8   0   6   8   0  12   0   0 |   2   0   4   0   0   0   4   0  0 |  * 80  *  *  *
x3x . x4x    48 |  24   24   24  24 |   8  12  12   0  12  12   0   6 |   0   4   4   0   3   0   0   3  0 |  *  * 80  *  *
x . o3x4x    48 |  24    0   48  24 |   0  24  12   0   0   0  16  13 |   0   0   0   8   6   0   0   0  2 |  *  *  * 40  *
. x3o3x4x   192 |   0  192  192  96 |   0   0   0  64  96  96  64  48 |   0   0   0   0   0  16  32  24  8 |  *  *  *  * 10

snubbed forms: x3x3o3x4s

© 2004-2024
top of page