Acronym | quicpatint | |||||||||||||||||||||||||||
Name | quasicelliprismatotruncated penteractitriacontiditeron | |||||||||||||||||||||||||||
Field of sections |
© | |||||||||||||||||||||||||||
Circumradius | sqrt[35-14 sqrt(2)]/2 = 1.949424 | |||||||||||||||||||||||||||
Vertex figure |
© | |||||||||||||||||||||||||||
Coordinates | ((3 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2) & all permutations, all changes of sign | |||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| |||||||||||||||||||||||||||
Face vector | 1920, 5760, 5760, 2160, 242 | |||||||||||||||||||||||||||
Confer |
| |||||||||||||||||||||||||||
External links |
As abstract polytope quicpatint is isomorphic to captint, thereby replacing octagrams by octagons, resp. stop by op and quith by tic, resp. histodip by hodip, quithip by ticcup, and quiproh by proh.
Incidence matrix according to Dynkin symbol
x3x3o3x4/3x . . . . . | 1920 | 1 2 2 1 | 2 2 1 1 2 2 1 2 | 1 2 2 1 2 1 1 2 1 | 1 1 2 1 1 ------------+------+-------------------+---------------------------------+------------------------------------+--------------- x . . . . | 2 | 960 * * * | 2 2 1 0 0 0 0 0 | 1 2 2 1 2 0 0 0 0 | 1 1 2 1 0 . x . . . | 2 | * 1920 * * | 1 0 0 1 1 1 0 0 | 1 1 1 0 0 1 1 1 0 | 1 1 1 0 1 . . . x . | 2 | * * 1920 * | 0 1 0 0 1 0 1 1 | 0 1 0 1 1 1 0 1 1 | 1 0 1 1 1 . . . . x | 2 | * * * 960 | 0 0 1 0 0 2 0 2 | 0 0 2 0 2 0 1 2 1 | 0 1 2 1 1 ------------+------+-------------------+---------------------------------+------------------------------------+--------------- x3x . . . | 6 | 3 3 0 0 | 640 * * * * * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 x . . x . | 4 | 2 0 2 0 | * 960 * * * * * * | 0 1 0 1 1 0 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 2 | * * 480 * * * * * | 0 0 2 0 2 0 0 0 0 | 0 1 2 1 0 . x3o . . | 3 | 0 3 0 0 | * * * 640 * * * * | 1 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . x . | 4 | 0 2 2 0 | * * * * 960 * * * | 0 1 0 0 0 1 0 1 0 | 1 0 1 0 1 . x . . x | 4 | 0 2 0 2 | * * * * * 960 * * | 0 0 1 0 0 0 1 1 0 | 0 1 1 0 1 . . o3x . | 3 | 0 0 3 0 | * * * * * * 640 * | 0 0 0 1 0 1 0 0 1 | 1 0 0 1 1 . . . x4/3x | 8 | 0 0 4 4 | * * * * * * * 480 | 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ------------+------+-------------------+---------------------------------+------------------------------------+--------------- x3x3o . . ♦ 12 | 6 12 0 0 | 4 0 0 4 0 0 0 0 | 160 * * * * * * * * | 1 1 0 0 0 x3x . x . ♦ 12 | 6 6 6 0 | 2 3 0 0 3 0 0 0 | * 320 * * * * * * * | 1 0 1 0 0 x3x . . x ♦ 12 | 6 6 0 6 | 2 0 3 0 0 3 0 0 | * * 320 * * * * * * | 0 1 1 0 0 x . o3x . ♦ 6 | 3 0 6 0 | 0 3 0 0 0 0 2 0 | * * * 320 * * * * * | 1 0 0 1 0 x . . x4/3x ♦ 16 | 8 0 8 8 | 0 4 4 0 0 0 0 2 | * * * * 240 * * * * | 0 0 1 1 0 . x3o3x . ♦ 12 | 0 12 12 0 | 0 0 0 4 6 0 4 0 | * * * * * 160 * * * | 1 0 0 0 1 . x3o . x ♦ 6 | 0 6 0 3 | 0 0 0 2 0 3 0 0 | * * * * * * 320 * * | 0 1 0 0 1 . x . x4/3x ♦ 16 | 0 8 8 8 | 0 0 0 0 4 4 0 2 | * * * * * * * 240 * | 0 0 1 0 1 . . o3x4/3x ♦ 24 | 0 0 24 12 | 0 0 0 0 0 0 8 6 | * * * * * * * * 80 | 0 0 0 1 1 ------------+------+-------------------+---------------------------------+------------------------------------+--------------- x3x3o3x . ♦ 60 | 30 60 60 0 | 20 30 0 20 30 0 20 0 | 5 10 0 10 0 5 0 0 0 | 32 * * * * x3x3o . x ♦ 24 | 12 24 0 12 | 8 0 6 8 0 12 0 0 | 2 0 4 0 0 0 4 0 0 | * 80 * * * x3x . x4/3x ♦ 48 | 24 24 24 24 | 8 12 12 0 12 12 0 6 | 0 4 4 0 3 0 0 3 0 | * * 80 * * x . o3x4/3x ♦ 48 | 24 0 48 24 | 0 24 12 0 0 0 16 13 | 0 0 0 8 6 0 0 0 2 | * * * 40 * . x3o3x4/3x ♦ 192 | 0 192 192 96 | 0 0 0 64 96 96 64 48 | 0 0 0 0 0 16 32 24 8 | * * * * 10
© 2004-2025 | top of page |