Acronym quicpatint
Name quasicelliprismatotruncated penteractitriacontiditeron
Field of sections
 ©
Circumradius sqrt[35-14 sqrt(2)]/2 = 1.949424
Vertex figure
 ©
Coordinates ((3 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – uniform polyteral members:
by cells: gaquidpoth giphado histodip pittip prip proh quithip tuttip
gircaptint 1010032004080
quicpatint 0080032104080
& others)
Face vector 1920, 5760, 5760, 2160, 242
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude   polytopewiki  

As abstract polytope quicpatint is isomorphic to captint, thereby replacing octagrams by octagons, resp. stop by op and quith by tic, resp. histodip by hodip, quithip by ticcup, and quiproh by proh.


Incidence matrix according to Dynkin symbol

x3x3o3x4/3x

. . . .   . | 1920 |   1    2    2   1 |   2   2   1   1   2   2   1   2 |   1   2   2   1   2   1   1   2  1 |  1  1  2  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x . . .   . |    2 | 960    *    *   * |   2   2   1   0   0   0   0   0 |   1   2   2   1   2   0   0   0  0 |  1  1  2  1  0
. x . .   . |    2 |   * 1920    *   * |   1   0   0   1   1   1   0   0 |   1   1   1   0   0   1   1   1  0 |  1  1  1  0  1
. . . x   . |    2 |   *    * 1920   * |   0   1   0   0   1   0   1   1 |   0   1   0   1   1   1   0   1  1 |  1  0  1  1  1
. . . .   x |    2 |   *    *    * 960 |   0   0   1   0   0   2   0   2 |   0   0   2   0   2   0   1   2  1 |  0  1  2  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x . .   . |    6 |   3    3    0   0 | 640   *   *   *   *   *   *   * |   1   1   1   0   0   0   0   0  0 |  1  1  1  0  0
x . . x   . |    4 |   2    0    2   0 |   * 960   *   *   *   *   *   * |   0   1   0   1   1   0   0   0  0 |  1  0  1  1  0
x . . .   x |    4 |   2    0    0   2 |   *   * 480   *   *   *   *   * |   0   0   2   0   2   0   0   0  0 |  0  1  2  1  0
. x3o .   . |    3 |   0    3    0   0 |   *   *   * 640   *   *   *   * |   1   0   0   0   0   1   1   0  0 |  1  1  0  0  1
. x . x   . |    4 |   0    2    2   0 |   *   *   *   * 960   *   *   * |   0   1   0   0   0   1   0   1  0 |  1  0  1  0  1
. x . .   x |    4 |   0    2    0   2 |   *   *   *   *   * 960   *   * |   0   0   1   0   0   0   1   1  0 |  0  1  1  0  1
. . o3x   . |    3 |   0    0    3   0 |   *   *   *   *   *   * 640   * |   0   0   0   1   0   1   0   0  1 |  1  0  0  1  1
. . . x4/3x |    8 |   0    0    4   4 |   *   *   *   *   *   *   * 480 |   0   0   0   0   1   0   0   1  1 |  0  0  1  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x3o .   .    12 |   6   12    0   0 |   4   0   0   4   0   0   0   0 | 160   *   *   *   *   *   *   *  * |  1  1  0  0  0
x3x . x   .    12 |   6    6    6   0 |   2   3   0   0   3   0   0   0 |   * 320   *   *   *   *   *   *  * |  1  0  1  0  0
x3x . .   x    12 |   6    6    0   6 |   2   0   3   0   0   3   0   0 |   *   * 320   *   *   *   *   *  * |  0  1  1  0  0
x . o3x   .     6 |   3    0    6   0 |   0   3   0   0   0   0   2   0 |   *   *   * 320   *   *   *   *  * |  1  0  0  1  0
x . . x4/3x    16 |   8    0    8   8 |   0   4   4   0   0   0   0   2 |   *   *   *   * 240   *   *   *  * |  0  0  1  1  0
. x3o3x   .    12 |   0   12   12   0 |   0   0   0   4   6   0   4   0 |   *   *   *   *   * 160   *   *  * |  1  0  0  0  1
. x3o .   x     6 |   0    6    0   3 |   0   0   0   2   0   3   0   0 |   *   *   *   *   *   * 320   *  * |  0  1  0  0  1
. x . x4/3x    16 |   0    8    8   8 |   0   0   0   0   4   4   0   2 |   *   *   *   *   *   *   * 240  * |  0  0  1  0  1
. . o3x4/3x    24 |   0    0   24  12 |   0   0   0   0   0   0   8   6 |   *   *   *   *   *   *   *   * 80 |  0  0  0  1  1
------------+------+-------------------+---------------------------------+------------------------------------+---------------
x3x3o3x   .    60 |  30   60   60   0 |  20  30   0  20  30   0  20   0 |   5  10   0  10   0   5   0   0  0 | 32  *  *  *  *
x3x3o .   x    24 |  12   24    0  12 |   8   0   6   8   0  12   0   0 |   2   0   4   0   0   0   4   0  0 |  * 80  *  *  *
x3x . x4/3x    48 |  24   24   24  24 |   8  12  12   0  12  12   0   6 |   0   4   4   0   3   0   0   3  0 |  *  * 80  *  *
x . o3x4/3x    48 |  24    0   48  24 |   0  24  12   0   0   0  16  13 |   0   0   0   8   6   0   0   0  2 |  *  *  * 40  *
. x3o3x4/3x   192 |   0  192  192  96 |   0   0   0  64  96  96  64  48 |   0   0   0   0   0  16  32  24  8 |  *  *  *  * 10

© 2004-2024
top of page