Acronym quithip
Name quasitruncated-hexahedron prism
Cross sections
 ©
Circumradius sqrt[2-sqrt(2)] = 0.765367
Colonel of regiment (is itself locally convex – no other uniform polyhedral members)
Dihedral angles
  • at {8/3} between quith and stop:   90°
  • at {3} between quith and trip:   90°
  • at {4} between stop and stop:   90°
  • at {4} between stop and trip:   arccos[1/sqrt(3)] = 54.735610°
Face vector 48, 96, 64, 16
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki

As abstract polytope quithip is isomorphic to ticcup, thereby replacing octagrams by octagons, resp. replacing stop by op and quith by tic.


Incidence matrix according to Dynkin symbol

x o3x4/3x

. . .   . | 48 |  1  2  1 |  2  1  1  2 | 1 2 1
----------+----+----------+-------------+------
x . .   . |  2 | 24  *  * |  2  1  0  0 | 1 2 0
. . x   . |  2 |  * 48  * |  1  0  1  1 | 1 1 1
. . .   x |  2 |  *  * 24 |  0  1  0  2 | 0 2 1
----------+----+----------+-------------+------
x . x   . |  4 |  2  2  0 | 24  *  *  * | 1 1 0
x . .   x |  4 |  2  0  2 |  * 12  *  * | 0 2 0
. o3x   . |  3 |  0  3  0 |  *  * 16  * | 1 0 1
. . x4/3x |  8 |  0  4  4 |  *  *  * 12 | 0 1 1
----------+----+----------+-------------+------
x o3x   .   6 |  3  6  0 |  3  0  2  0 | 8 * *
x . x4/3x  16 |  8  8  8 |  4  4  0  2 | * 6 *
. o3x4/3x  24 |  0 24 12 |  0  0  8  6 | * * 2

x o3/2x4/3x

. .   .   . | 48 |  1  2  1 |  2  1  1  2 | 1 2 1
------------+----+----------+-------------+------
x .   .   . |  2 | 24  *  * |  2  1  0  0 | 1 2 0
. .   x   . |  2 |  * 48  * |  1  0  1  1 | 1 1 1
. .   .   x |  2 |  *  * 24 |  0  1  0  2 | 0 2 1
------------+----+----------+-------------+------
x .   x   . |  4 |  2  2  0 | 24  *  *  * | 1 1 0
x .   .   x |  4 |  2  0  2 |  * 12  *  * | 0 2 0
. o3/2x   . |  3 |  0  3  0 |  *  * 16  * | 1 0 1
. .   x4/3x |  8 |  0  4  4 |  *  *  * 12 | 0 1 1
------------+----+----------+-------------+------
x o3/2x   .   6 |  3  6  0 |  3  0  2  0 | 8 * *
x .   x4/3x  16 |  8  8  8 |  4  4  0  2 | * 6 *
. o3/2x4/3x  24 |  0 24 12 |  0  0  8  6 | * * 2

oo3xx4/3xx&#x   → height = 1
(quith || quith)

o.3o.4/3o.    | 24  * |  1  2  1  0  0 | 1 2  2  1 0 0 | 1 1 2 0
.o3.o4/3.o    |  * 24 |  0  0  1  2  1 | 0 0  2  1 1 2 | 0 1 2 1
--------------+-------+----------------+---------------+--------
.. x.   ..    |  2  0 | 24  *  *  *  * | 1 1  1  0 0 0 | 1 1 1 0
.. ..   x.    |  2  0 |  * 12  *  *  * | 0 2  0  1 0 0 | 1 0 2 0
oo3oo4/3oo&#x |  1  1 |  *  * 24  *  * | 0 0  2  1 0 0 | 0 1 2 0
.. .x   ..    |  0  2 |  *  *  * 24  * | 0 0  1  0 1 1 | 0 1 1 1
.. ..   .x    |  0  2 |  *  *  *  * 12 | 0 0  0  1 0 2 | 0 0 2 1
--------------+-------+----------------+---------------+--------
o.3x.   ..    |  3  0 |  3  0  0  0  0 | 8 *  *  * * * | 1 1 0 0
.. x.4/3x.    |  8  0 |  4  4  0  0  0 | * 6  *  * * * | 1 0 1 0
.. xx   ..&#x |  2  2 |  1  0  2  1  0 | * * 24  * * * | 0 1 1 0
.. ..   xx&#x |  2  2 |  0  1  2  0  1 | * *  * 12 * * | 0 0 2 0
.o3.x   ..    |  0  3 |  0  0  0  3  0 | * *  *  * 8 * | 0 1 0 1
.. .x4/3.x    |  0  8 |  0  0  0  4  4 | * *  *  * * 6 | 0 0 1 1
--------------+-------+----------------+---------------+--------
o.3x.4/3x.     24  0 | 24 12  0  0  0 | 8 6  0  0 0 0 | 1 * * *
oo3xx   ..&#x   3  3 |  3  0  3  3  0 | 1 0  3  0 1 0 | * 8 * *
.. xx4/3xx&#x   8  8 |  4  4  8  4  4 | 0 1  4  4 0 1 | * * 6 *
.o3.x4/3.x      0 24 |  0  0  0 24 12 | 0 0  0  0 8 6 | * * * 1

© 2004-2025
top of page