Acronym | quithip |
Name | quasitruncated-hexahedron prism |
Cross sections |
© |
Circumradius | sqrt[2-sqrt(2)] = 0.765367 |
Colonel of regiment | (is itself locally convex – no other uniform polyhedral members) |
Dihedral angles | |
Face vector | 48, 96, 64, 16 |
Confer |
|
External links |
As abstract polytope quithip is isomorphic to ticcup, thereby replacing octagrams by octagons, resp. replacing stop by op and quith by tic.
Incidence matrix according to Dynkin symbol
x o3x4/3x . . . . | 48 | 1 2 1 | 2 1 1 2 | 1 2 1 ----------+----+----------+-------------+------ x . . . | 2 | 24 * * | 2 1 0 0 | 1 2 0 . . x . | 2 | * 48 * | 1 0 1 1 | 1 1 1 . . . x | 2 | * * 24 | 0 1 0 2 | 0 2 1 ----------+----+----------+-------------+------ x . x . | 4 | 2 2 0 | 24 * * * | 1 1 0 x . . x | 4 | 2 0 2 | * 12 * * | 0 2 0 . o3x . | 3 | 0 3 0 | * * 16 * | 1 0 1 . . x4/3x | 8 | 0 4 4 | * * * 12 | 0 1 1 ----------+----+----------+-------------+------ x o3x . ♦ 6 | 3 6 0 | 3 0 2 0 | 8 * * x . x4/3x ♦ 16 | 8 8 8 | 4 4 0 2 | * 6 * . o3x4/3x ♦ 24 | 0 24 12 | 0 0 8 6 | * * 2
x o3/2x4/3x . . . . | 48 | 1 2 1 | 2 1 1 2 | 1 2 1 ------------+----+----------+-------------+------ x . . . | 2 | 24 * * | 2 1 0 0 | 1 2 0 . . x . | 2 | * 48 * | 1 0 1 1 | 1 1 1 . . . x | 2 | * * 24 | 0 1 0 2 | 0 2 1 ------------+----+----------+-------------+------ x . x . | 4 | 2 2 0 | 24 * * * | 1 1 0 x . . x | 4 | 2 0 2 | * 12 * * | 0 2 0 . o3/2x . | 3 | 0 3 0 | * * 16 * | 1 0 1 . . x4/3x | 8 | 0 4 4 | * * * 12 | 0 1 1 ------------+----+----------+-------------+------ x o3/2x . ♦ 6 | 3 6 0 | 3 0 2 0 | 8 * * x . x4/3x ♦ 16 | 8 8 8 | 4 4 0 2 | * 6 * . o3/2x4/3x ♦ 24 | 0 24 12 | 0 0 8 6 | * * 2
oo3xx4/3xx&#x → height = 1
(quith || quith)
o.3o.4/3o. | 24 * | 1 2 1 0 0 | 1 2 2 1 0 0 | 1 1 2 0
.o3.o4/3.o | * 24 | 0 0 1 2 1 | 0 0 2 1 1 2 | 0 1 2 1
--------------+-------+----------------+---------------+--------
.. x. .. | 2 0 | 24 * * * * | 1 1 1 0 0 0 | 1 1 1 0
.. .. x. | 2 0 | * 12 * * * | 0 2 0 1 0 0 | 1 0 2 0
oo3oo4/3oo&#x | 1 1 | * * 24 * * | 0 0 2 1 0 0 | 0 1 2 0
.. .x .. | 0 2 | * * * 24 * | 0 0 1 0 1 1 | 0 1 1 1
.. .. .x | 0 2 | * * * * 12 | 0 0 0 1 0 2 | 0 0 2 1
--------------+-------+----------------+---------------+--------
o.3x. .. | 3 0 | 3 0 0 0 0 | 8 * * * * * | 1 1 0 0
.. x.4/3x. | 8 0 | 4 4 0 0 0 | * 6 * * * * | 1 0 1 0
.. xx ..&#x | 2 2 | 1 0 2 1 0 | * * 24 * * * | 0 1 1 0
.. .. xx&#x | 2 2 | 0 1 2 0 1 | * * * 12 * * | 0 0 2 0
.o3.x .. | 0 3 | 0 0 0 3 0 | * * * * 8 * | 0 1 0 1
.. .x4/3.x | 0 8 | 0 0 0 4 4 | * * * * * 6 | 0 0 1 1
--------------+-------+----------------+---------------+--------
o.3x.4/3x. ♦ 24 0 | 24 12 0 0 0 | 8 6 0 0 0 0 | 1 * * *
oo3xx ..&#x ♦ 3 3 | 3 0 3 3 0 | 1 0 3 0 1 0 | * 8 * *
.. xx4/3xx&#x ♦ 8 8 | 4 4 8 4 4 | 0 1 4 4 0 1 | * * 6 *
.o3.x4/3.x ♦ 0 24 | 0 0 0 24 12 | 0 0 0 0 8 6 | * * * 1
© 2004-2024 | top of page |