Acronym quithip Name quasitruncated-hexahedron prism Cross sections ` ©` Circumradius sqrt[2-sqrt(2)] = 0.765367 Colonel of regiment (is itself locally convex – no other uniform polyhedral members) Dihedral angles at {8/3} between quith and stop:   90° at {3} between quith and trip:   90° at {4} between stop and stop:   90° at {4} between stop and trip:   arccos(1/sqrt(3)) = 54.735610° Externallinks

As abstract polytope quithip is isomorphic to ticcup, thereby replacing octagrams by octagons, resp. replacing stop by op and quith by tic.

Incidence matrix according to Dynkin symbol

```x o3x4/3x

. . .   . | 48 |  1  2  1 |  2  1  1  2 | 1 2 1
----------+----+----------+-------------+------
x . .   . |  2 | 24  *  * |  2  1  0  0 | 1 2 0
. . x   . |  2 |  * 48  * |  1  0  1  1 | 1 1 1
. . .   x |  2 |  *  * 24 |  0  1  0  2 | 0 2 1
----------+----+----------+-------------+------
x . x   . |  4 |  2  2  0 | 24  *  *  * | 1 1 0
x . .   x |  4 |  2  0  2 |  * 12  *  * | 0 2 0
. o3x   . |  3 |  0  3  0 |  *  * 16  * | 1 0 1
. . x4/3x |  8 |  0  4  4 |  *  *  * 12 | 0 1 1
----------+----+----------+-------------+------
x o3x   . ♦  6 |  3  6  0 |  3  0  2  0 | 8 * *
x . x4/3x ♦ 16 |  8  8  8 |  4  4  0  2 | * 6 *
. o3x4/3x ♦ 24 |  0 24 12 |  0  0  8  6 | * * 2
```

```x o3/2x4/3x

. .   .   . | 48 |  1  2  1 |  2  1  1  2 | 1 2 1
------------+----+----------+-------------+------
x .   .   . |  2 | 24  *  * |  2  1  0  0 | 1 2 0
. .   x   . |  2 |  * 48  * |  1  0  1  1 | 1 1 1
. .   .   x |  2 |  *  * 24 |  0  1  0  2 | 0 2 1
------------+----+----------+-------------+------
x .   x   . |  4 |  2  2  0 | 24  *  *  * | 1 1 0
x .   .   x |  4 |  2  0  2 |  * 12  *  * | 0 2 0
. o3/2x   . |  3 |  0  3  0 |  *  * 16  * | 1 0 1
. .   x4/3x |  8 |  0  4  4 |  *  *  * 12 | 0 1 1
------------+----+----------+-------------+------
x o3/2x   . ♦  6 |  3  6  0 |  3  0  2  0 | 8 * *
x .   x4/3x ♦ 16 |  8  8  8 |  4  4  0  2 | * 6 *
. o3/2x4/3x ♦ 24 |  0 24 12 |  0  0  8  6 | * * 2
```

```oo3xx4/3xx&#x   → height = 1
(quith || quith)

o.3o.4/3o.    | 24  * |  1  2  1  0  0 | 1 2  2  1 0 0 | 1 1 2 0
.o3.o4/3.o    |  * 24 |  0  0  1  2  1 | 0 0  2  1 1 2 | 0 1 2 1
--------------+-------+----------------+---------------+--------
.. x.   ..    |  2  0 | 24  *  *  *  * | 1 1  1  0 0 0 | 1 1 1 0
.. ..   x.    |  2  0 |  * 12  *  *  * | 0 2  0  1 0 0 | 1 0 2 0
oo3oo4/3oo&#x |  1  1 |  *  * 24  *  * | 0 0  2  1 0 0 | 0 1 2 0
.. .x   ..    |  0  2 |  *  *  * 24  * | 0 0  1  0 1 1 | 0 1 1 1
.. ..   .x    |  0  2 |  *  *  *  * 12 | 0 0  0  1 0 2 | 0 0 2 1
--------------+-------+----------------+---------------+--------
o.3x.   ..    |  3  0 |  3  0  0  0  0 | 8 *  *  * * * | 1 1 0 0
.. x.4/3x.    |  8  0 |  4  4  0  0  0 | * 6  *  * * * | 1 0 1 0
.. xx   ..&#x |  2  2 |  1  0  2  1  0 | * * 24  * * * | 0 1 1 0
.. ..   xx&#x |  2  2 |  0  1  2  0  1 | * *  * 12 * * | 0 0 2 0
.o3.x   ..    |  0  3 |  0  0  0  3  0 | * *  *  * 8 * | 0 1 0 1
.. .x4/3.x    |  0  8 |  0  0  0  4  4 | * *  *  * * 6 | 0 0 1 1
--------------+-------+----------------+---------------+--------
o.3x.4/3x.    ♦ 24  0 | 24 12  0  0  0 | 8 6  0  0 0 0 | 1 * * *
oo3xx   ..&#x ♦  3  3 |  3  0  3  3  0 | 1 0  3  0 1 0 | * 8 * *
.. xx4/3xx&#x ♦  8  8 |  4  4  8  4  4 | 0 1  4  4 0 1 | * * 6 *
.o3.x4/3.x    ♦  0 24 |  0  0  0 24 12 | 0 0  0  0 8 6 | * * * 1
```

 © 2004-2021 top of page