Acronym pattit Name prismatotruncated triacontiditeron,runcitruncated pentacross Circumradius sqrt(15/2) = 2.738613 Vertex figure ` ©` Coordinates (3/sqrt(2), sqrt(2), 1/sqrt(2), 1/sqrt(2), 0)   & all permutations, all changes of sign Confer segmentotera: pripa gippid   general polytopal classes: lace simplices   partial Stott expansions Externallinks

Incidence matrix according to Dynkin symbol

```x3x3o3x4o

. . . . . | 960 |   1   2    4 |   2   4   1   4   2   2 |  1   4   2   2   2   2  1 |  2  2  1  1
----------+-----+--------------+-------------------------+---------------------------+------------
x . . . . |   2 | 480   *    * |   2   4   0   0   0   0 |  1   4   2   2   0   0  0 |  2  2  1  0
. x . . . |   2 |   * 960    * |   1   0   1   2   0   0 |  1   2   0   0   2   1  0 |  2  1  0  1
. . . x . |   2 |   *   * 1920 |   0   1   0   1   1   1 |  0   1   1   1   1   1  1 |  1  1  1  1
----------+-----+--------------+-------------------------+---------------------------+------------
x3x . . . |   6 |   3   3    0 | 320   *   *   *   *   * |  1   2   0   0   0   0  0 |  2  1  0  0
x . . x . |   4 |   2   0    2 |   * 960   *   *   *   * |  0   1   1   1   0   0  0 |  1  1  1  0
. x3o . . |   3 |   0   3    0 |   *   * 320   *   *   * |  1   0   0   0   2   0  0 |  2  0  0  1
. x . x . |   4 |   0   2    2 |   *   *   * 960   *   * |  0   1   0   0   1   1  0 |  1  1  0  1
. . o3x . |   3 |   0   0    3 |   *   *   *   * 640   * |  0   0   1   0   1   0  1 |  1  0  1  1
. . . x4o |   4 |   0   0    4 |   *   *   *   *   * 480 |  0   0   0   1   0   1  1 |  0  1  1  1
----------+-----+--------------+-------------------------+---------------------------+------------
x3x3o . . ♦  12 |   6  12    0 |   4   0   4   0   0   0 | 80   *   *   *   *   *  * |  2  0  0  0
x3x . x . ♦  12 |   6   6    6 |   2   3   0   3   0   0 |  * 320   *   *   *   *  * |  1  1  0  0
x . o3x . ♦   6 |   3   0    6 |   0   3   0   0   2   0 |  *   * 320   *   *   *  * |  1  0  1  0
x . . x4o ♦   8 |   4   0    8 |   0   4   0   0   0   2 |  *   *   * 240   *   *  * |  0  1  1  0
. x3o3x . ♦  12 |   0  12   12 |   0   0   4   6   4   0 |  *   *   *   * 160   *  * |  1  0  0  1
. x . x4o ♦   8 |   0   4    8 |   0   0   0   4   0   2 |  *   *   *   *   * 240  * |  0  1  0  1
. . o3x4o ♦  12 |   0   0   24 |   0   0   0   0   8   6 |  *   *   *   *   *   * 80 |  0  0  1  1
----------+-----+--------------+-------------------------+---------------------------+------------
x3x3o3x . ♦  60 |  30  60   60 |  20  30  20  30  20   0 |  5  10  10   0   5   0  0 | 32  *  *  *
x3x . x4o ♦  24 |  12  12   24 |   4  12   0  12   0   6 |  0   4   0   3   0   3  0 |  * 80  *  *
x . o3x4o ♦  24 |  12   0   48 |   0  24   0   0  16  12 |  0   0   8   6   0   0  2 |  *  * 40  *
. x3o3x4o ♦  96 |   0  96  192 |   0   0  32  96  64  48 |  0   0   0   0  16  24  8 |  *  *  * 10
```

```x3x3o3x4/3o

. . . .   . | 960 |   1   2    4 |   2   4   1   4   2   2 |  1   4   2   2   2   2  1 |  2  2  1  1
------------+-----+--------------+-------------------------+---------------------------+------------
x . . .   . |   2 | 480   *    * |   2   4   0   0   0   0 |  1   4   2   2   0   0  0 |  2  2  1  0
. x . .   . |   2 |   * 960    * |   1   0   1   2   0   0 |  1   2   0   0   2   1  0 |  2  1  0  1
. . . x   . |   2 |   *   * 1920 |   0   1   0   1   1   1 |  0   1   1   1   1   1  1 |  1  1  1  1
------------+-----+--------------+-------------------------+---------------------------+------------
x3x . .   . |   6 |   3   3    0 | 320   *   *   *   *   * |  1   2   0   0   0   0  0 |  2  1  0  0
x . . x   . |   4 |   2   0    2 |   * 960   *   *   *   * |  0   1   1   1   0   0  0 |  1  1  1  0
. x3o .   . |   3 |   0   3    0 |   *   * 320   *   *   * |  1   0   0   0   2   0  0 |  2  0  0  1
. x . x   . |   4 |   0   2    2 |   *   *   * 960   *   * |  0   1   0   0   1   1  0 |  1  1  0  1
. . o3x   . |   3 |   0   0    3 |   *   *   *   * 640   * |  0   0   1   0   1   0  1 |  1  0  1  1
. . . x4/3o |   4 |   0   0    4 |   *   *   *   *   * 480 |  0   0   0   1   0   1  1 |  0  1  1  1
------------+-----+--------------+-------------------------+---------------------------+------------
x3x3o .   . ♦  12 |   6  12    0 |   4   0   4   0   0   0 | 80   *   *   *   *   *  * |  2  0  0  0
x3x . x   . ♦  12 |   6   6    6 |   2   3   0   3   0   0 |  * 320   *   *   *   *  * |  1  1  0  0
x . o3x   . ♦   6 |   3   0    6 |   0   3   0   0   2   0 |  *   * 320   *   *   *  * |  1  0  1  0
x . . x4/3o ♦   8 |   4   0    8 |   0   4   0   0   0   2 |  *   *   * 240   *   *  * |  0  1  1  0
. x3o3x   . ♦  12 |   0  12   12 |   0   0   4   6   4   0 |  *   *   *   * 160   *  * |  1  0  0  1
. x . x4/3o ♦   8 |   0   4    8 |   0   0   0   4   0   2 |  *   *   *   *   * 240  * |  0  1  0  1
. . o3x4/3o ♦  12 |   0   0   24 |   0   0   0   0   8   6 |  *   *   *   *   *   * 80 |  0  0  1  1
------------+-----+--------------+-------------------------+---------------------------+------------
x3x3o3x   . ♦  60 |  30  60   60 |  20  30  20  30  20   0 |  5  10  10   0   5   0  0 | 32  *  *  *
x3x . x4/3o ♦  24 |  12  12   24 |   4  12   0  12   0   6 |  0   4   0   3   0   3  0 |  * 80  *  *
x . o3x4/3o ♦  24 |  12   0   48 |   0  24   0   0  16  12 |  0   0   8   6   0   0  2 |  *  * 40  *
. x3o3x4/3o ♦  96 |   0  96  192 |   0   0  32  96  64  48 |  0   0   0   0  16  24  8 |  *  *  * 10
```

```x3o3x *b3x3x

. . .    . . | 960 |   2   2   2   1 |   1   2   2   2   1   1   2   2   2 |  1  1   1   2   2   2  1   1  1   2 |  1  1  1  2  1
-------------+-----+-----------------+-------------------------------------+-------------------------------------+---------------
x . .    . . |   2 | 960   *   *   * |   1   1   1   1   0   0   0   0   0 |  1  1   1   1   1   1  0   0  0   0 |  1  1  1  1  0
. . x    . . |   2 |   * 960   *   * |   0   1   0   0   1   0   1   1   0 |  1  0   0   1   1   0  1   1  0   1 |  1  1  0  1  1
. . .    x . |   2 |   *   * 960   * |   0   0   1   0   0   1   1   0   1 |  0  1   0   1   0   1  1   0  1   1 |  1  0  1  1  1
. . .    . x |   2 |   *   *   * 480 |   0   0   0   2   0   0   0   2   2 |  0  0   1   0   2   2  0   1  1   2 |  0  1  1  2  1
-------------+-----+-----------------+-------------------------------------+-------------------------------------+---------------
x3o .    . . |   3 |   3   0   0   0 | 320   *   *   *   *   *   *   *   * |  1  1   1   0   0   0  0   0  0   0 |  1  1  1  0  0
x . x    . . |   4 |   2   2   0   0 |   * 480   *   *   *   *   *   *   * |  1  0   0   1   1   0  0   0  0   0 |  1  1  0  1  0
x . .    x . |   4 |   2   0   2   0 |   *   * 480   *   *   *   *   *   * |  0  1   0   1   0   1  0   0  0   0 |  1  0  1  1  0
x . .    . x |   4 |   2   0   0   2 |   *   *   * 480   *   *   *   *   * |  0  0   1   0   1   1  0   0  0   0 |  0  1  1  1  0
. o3x    . . |   3 |   0   3   0   0 |   *   *   *   * 320   *   *   *   * |  1  0   0   0   0   0  1   1  0   0 |  1  1  0  0  1
. o . *b3x . |   3 |   0   0   3   0 |   *   *   *   *   * 320   *   *   * |  0  1   0   0   0   0  1   0  1   0 |  1  0  1  0  1
. . x    x . |   4 |   0   2   2   0 |   *   *   *   *   *   * 480   *   * |  0  0   0   1   0   0  1   0  0   1 |  1  0  0  1  1
. . x    . x |   4 |   0   2   0   2 |   *   *   *   *   *   *   * 480   * |  0  0   0   0   1   0  0   1  0   1 |  0  1  0  1  1
. . .    x3x |   6 |   0   0   3   3 |   *   *   *   *   *   *   *   * 320 |  0  0   0   0   0   1  0   0  1   1 |  0  0  1  1  1
-------------+-----+-----------------+-------------------------------------+-------------------------------------+---------------
x3o3x    . . ♦  12 |  12  12   0   0 |   4   6   0   0   4   0   0   0   0 | 80  *   *   *   *   *  *   *  *   * |  1  1  0  0  0
x3o . *b3x . ♦  12 |  12   0  12   0 |   4   0   6   0   0   4   0   0   0 |  * 80   *   *   *   *  *   *  *   * |  1  0  1  0  0
x3o .    . x ♦   6 |   6   0   0   3 |   2   0   0   3   0   0   0   0   0 |  *  * 160   *   *   *  *   *  *   * |  0  1  1  0  0
x . x    x . ♦   8 |   4   4   4   0 |   0   2   2   0   0   0   2   0   0 |  *  *   * 240   *   *  *   *  *   * |  1  0  0  1  0
x . x    . x ♦   8 |   4   4   0   4 |   0   2   0   2   0   0   0   2   0 |  *  *   *   * 240   *  *   *  *   * |  0  1  0  1  0
x . .    x3x ♦  12 |   6   0   6   6 |   0   0   3   3   0   0   0   0   2 |  *  *   *   *   * 160  *   *  *   * |  0  0  1  1  0
. o3x *b3x . ♦  12 |   0  12  12   0 |   0   0   0   0   4   4   6   0   0 |  *  *   *   *   *   * 80   *  *   * |  1  0  0  0  1
. o3x    . x ♦   6 |   0   6   0   3 |   0   0   0   0   2   0   0   3   0 |  *  *   *   *   *   *  * 160  *   * |  0  1  0  0  1
. o . *b3x3x ♦  12 |   0   0  12   6 |   0   0   0   0   0   4   0   0   4 |  *  *   *   *   *   *  *   * 80   * |  0  0  1  0  1
. . x    x3x ♦  12 |   0   6   6   6 |   0   0   0   0   0   0   3   3   2 |  *  *   *   *   *   *  *   *  * 160 |  0  0  0  1  1
-------------+-----+-----------------+-------------------------------------+-------------------------------------+---------------
x3o3x *b3x . ♦  96 |  96  96  96   0 |  32  48  48   0  32  32  48   0   0 |  8  8   0  24   0   0  8   0  0   0 | 10  *  *  *  *
x3o3x    . x ♦  24 |  24  24   0  12 |   8  12   0  12   8   0   0  12   0 |  2  0   4   0   6   0  0   4  0   0 |  * 40  *  *  *
x3o . *b3x3x ♦  60 |  60   0  60  30 |  20   0  30  30   0  20   0   0  20 |  0  5  10   0   0  10  0   0  5   0 |  *  * 16  *  *
x . x    x3x ♦  24 |  12  12  12  12 |   0   6   6   6   0   0   6   6   4 |  0  0   0   3   3   2  0   0  0   2 |  *  *  * 80  *
. o3x *b3x3x ♦  60 |   0  60  60  30 |   0   0   0   0  20  20  30  30  20 |  0  0   0   0   0   0  5  10  5  10 |  *  *  *  * 16
```

```x3x3o3x4s

demi( . . . . . ) | 960 |   1   2   2   2 |   2   2   1   2   1   2   2   2   1 |  1   2   1  1   2   2  1   2   1  1 |  1  2  1  1  1
------------------+-----+-----------------+-------------------------------------+-------------------------------------+---------------
demi( x . . . . ) |   2 | 480   *   *   * |   2   2   0   0   0   0   2   0   0 |  1   2   1  0   2   0  0   2   1  0 |  1  2  1  0  1
demi( . x . . . ) |   2 |   * 960   *   * |   1   0   1   1   0   0   0   1   0 |  1   1   0  1   0   1  0   1   0  1 |  1  1  0  1  1
demi( . . . x . ) |   2 |   *   * 960   * |   0   1   0   1   1   1   0   0   0 |  0   1   1  1   1   1  1   0   0  0 |  1  1  1  1  0
sefa( . . . x4s ) |   2 |   *   *   * 960 |   0   0   0   0   0   1   1   1   1 |  0   0   0  0   1   1  1   1   1  1 |  0  1  1  1  1
------------------+-----+-----------------+-------------------------------------+-------------------------------------+---------------
demi( x3x . . . ) |   6 |   3   3   0   0 | 320   *   *   *   *   *   *   *   * |  1   1   0  0   0   0  0   1   0  0 |  1  1  0  0  1
demi( x . . x . ) |   4 |   2   0   2   0 |   * 480   *   *   *   *   *   *   * |  0   1   1  0   1   0  0   0   0  0 |  1  1  1  0  0
demi( . x3o . . ) |   3 |   0   3   0   0 |   *   * 320   *   *   *   *   *   * |  1   0   0  1   0   0  0   0   0  1 |  1  0  0  1  1
demi( . x . x . ) |   4 |   0   2   2   0 |   *   *   * 480   *   *   *   *   * |  0   1   0  1   0   1  0   0   0  0 |  1  1  0  1  0
demi( . . o3x . ) |   3 |   0   0   3   0 |   *   *   *   * 320   *   *   *   * |  0   0   1  1   0   0  1   0   0  0 |  1  0  1  1  0
. . . x4s   |   4 |   0   0   2   2 |   *   *   *   *   * 480   *   *   * |  0   0   0  0   1   1  1   0   0  0 |  0  1  1  1  0
sefa( x 2 . x4s ) |   4 |   2   0   0   2 |   *   *   *   *   *   * 480   *   * |  0   0   0  0   1   0  0   1   1  0 |  0  1  1  0  1
sefa( . x 2 x4s ) |   4 |   0   2   0   2 |   *   *   *   *   *   *   * 480   * |  0   0   0  0   0   1  0   1   0  1 |  0  1  0  1  1
sefa( . . o3x4s ) |   3 |   0   0   0   3 |   *   *   *   *   *   *   *   * 320 |  0   0   0  0   0   0  1   0   1  1 |  0  0  1  1  1
------------------+-----+-----------------+-------------------------------------+-------------------------------------+---------------
demi( x3x3o . . ) ♦  12 |   6  12   0   0 |   4   0   4   0   0   0   0   0   0 | 80   *   *  *   *   *  *   *   *  * |  1  0  0  0  1
demi( x3x . x . ) ♦  12 |   6   6   6   0 |   2   3   0   3   0   0   0   0   0 |  * 160   *  *   *   *  *   *   *  * |  1  1  0  0  0
demi( x . o3x . ) ♦   6 |   3   0   6   0 |   0   3   0   0   2   0   0   0   0 |  *   * 160  *   *   *  *   *   *  * |  1  0  1  0  0
demi( . x3o3x . ) ♦  12 |   0  12  12   0 |   0   0   4   6   4   0   0   0   0 |  *   *   * 80   *   *  *   *   *  * |  1  0  0  1  0
x 2 . x4s   ♦   8 |   4   0   4   4 |   0   2   0   0   0   2   2   0   0 |  *   *   *  * 240   *  *   *   *  * |  0  1  1  0  0
. x 2 x4s   ♦   8 |   0   4   4   4 |   0   0   0   2   0   2   0   2   0 |  *   *   *  *   * 240  *   *   *  * |  0  1  0  1  0
. . o3x4s   ♦  12 |   0   0  12  12 |   0   0   0   0   4   6   0   0   4 |  *   *   *  *   *   * 80   *   *  * |  0  0  1  1  0
sefa( x3x 2 x4s ) ♦  12 |   6   6   0   6 |   2   0   0   0   0   0   3   3   0 |  *   *   *  *   *   *  * 160   *  * |  0  1  0  0  1
sefa( x 2 o3x4s ) ♦   6 |   3   0   0   6 |   0   0   0   0   0   0   3   0   2 |  *   *   *  *   *   *  *   * 160  * |  0  0  1  0  1
sefa( . x3o3x4s ) ♦  12 |   0  12   0  12 |   0   0   4   0   0   0   0   6   4 |  *   *   *  *   *   *  *   *   * 80 |  0  0  0  1  1
------------------+-----+-----------------+-------------------------------------+-------------------------------------+---------------
demi( x3x3o3x . ) ♦  60 |  30  60  60   0 |  20  30  20  30  20   0   0   0   0 |  5  10  10  5   0   0  0   0   0  0 | 16  *  *  *  *
x3x 2 x4s   ♦  24 |  12  12  12  12 |   4   6   0   6   0   6   6   6   0 |  0   2   0  0   3   3  0   2   0  0 |  * 80  *  *  *
x 2 o3x4s   ♦  24 |  12   0  24  24 |   0  12   0   0   8  12  12   0   8 |  0   0   4  0   6   0  2   0   4  0 |  *  * 40  *  *
. x3o3x4s   ♦  96 |   0  96  96  96 |   0   0  32  48  32  48   0  48  32 |  0   0   0  8   0  24  8   0   0  8 |  *  *  * 10  *
sefa( x3x3o3x4s ) ♦  60 |  30  60   0  60 |  20   0  20   0   0   0  30  30  20 |  5   0   0  0   0   0  0  10  10  5 |  *  *  *  * 16

starting figure: x3x3o3x4x
```