Acronym hagy gircope
Name hexa-gyro-augmented gircope
Face vector 120, 312, 250, 58
Confer
blend-component:
gircope   squipuf  
related CRFs:
oxwQ wxoo3xxxx4oxxo&#zx   hau gircope  
general polytopal classes:
bistratic lace towers  

For this polychoron the augmentations of the ops of gircope by squipufs is to be done in this orientation ("gyro") that the squippies of squipuf adjoin to the cubes. Additionally, as these happen to be corealmic here, these even combine into esquidpies. – There is a different orientation of the squipufs as well ("ortho"), using then the trips to adjoin to the cubes. This then would result in hau gircope.


Incidence matrix according to Dynkin symbol

xwx3xxx4xox&xt   → both heights = 1/2
(girco || pseudo (w,x)-toe || girco)

o..3o..4o..     | 48  *  * |  1  1  1  1  1  0  0  0  0  0 | 1  1 1  1  1  1  1  1 0  0  0 0  0 0 | 1 1 1  1  1 0 0
.o.3.o.4.o.     |  * 24  * |  0  0  0  2  0  2  2  0  0  0 | 0  0 0  2  1  0  0  2 1  2  1 0  0 0 | 0 1 0  1  2 1 0
..o3..o4..o     |  *  * 48 |  0  0  0  0  1  0  1  1  1  1 | 0  0 0  0  0  1  1  1 0  1  1 1  1 1 | 0 0 1  1  1 1 1
----------------+----------+-------------------------------+--------------------------------------+----------------
x.. ... ...     |  2  0  0 | 24  *  *  *  *  *  *  *  *  * | 1  1 0  0  0  1  0  0 0  0  0 0  0 0 | 1 0 1  1  0 0 0
... x.. ...     |  2  0  0 |  * 24  *  *  *  *  *  *  *  * | 1  0 1  1  0  0  1  0 0  0  0 0  0 0 | 1 1 1  0  1 0 0
... ... x..     |  2  0  0 |  *  * 24  *  *  *  *  *  *  * | 0  1 1  0  1  0  0  0 0  0  0 0  0 0 | 1 1 0  1  0 0 0
oo.3oo.4oo.&#x  |  1  1  0 |  *  *  * 48  *  *  *  *  *  * | 0  0 0  1  1  0  0  1 0  0  0 0  0 0 | 0 1 0  1  1 0 0
o.o3o.o4o.o&#x  |  1  0  1 |  *  *  *  * 48  *  *  *  *  * | 0  0 0  0  0  1  1  1 0  0  0 0  0 0 | 0 0 1  1  1 0 0
... .x. ...     |  0  2  0 |  *  *  *  *  * 24  *  *  *  * | 0  0 0  1  0  0  0  0 1  1  0 0  0 0 | 0 1 0  0  1 1 0
.oo3.oo4.oo&#x  |  0  1  1 |  *  *  *  *  *  * 48  *  *  * | 0  0 0  0  0  0  0  1 0  1  1 0  0 0 | 0 0 0  1  1 1 0
..x ... ...     |  0  0  2 |  *  *  *  *  *  *  * 24  *  * | 0  0 0  0  0  1  0  0 0  0  0 1  1 0 | 0 0 1  1  0 0 1
... ..x ...     |  0  0  2 |  *  *  *  *  *  *  *  * 24  * | 0  0 0  0  0  0  1  0 0  1  0 1  0 1 | 0 0 1  0  1 1 1
... ... ..x     |  0  0  2 |  *  *  *  *  *  *  *  *  * 24 | 0  0 0  0  0  0  0  0 0  0  1 0  1 1 | 0 0 0  1  0 1 1
----------------+----------+-------------------------------+--------------------------------------+----------------
x..3x.. ...     |  6  0  0 |  3  3  0  0  0  0  0  0  0  0 | 8  * *  *  *  *  *  * *  *  * *  * * | 1 0 1  0  0 0 0
x.. ... x..     |  4  0  0 |  2  0  2  0  0  0  0  0  0  0 | * 12 *  *  *  *  *  * *  *  * *  * * | 1 0 0  1  0 0 0
... x..4x..     |  8  0  0 |  0  4  4  0  0  0  0  0  0  0 | *  * 6  *  *  *  *  * *  *  * *  * * | 1 1 0  0  0 0 0
... xx. ...&#x  |  2  2  0 |  0  1  0  2  0  1  0  0  0  0 | *  * * 24  *  *  *  * *  *  * *  * * | 0 1 0  0  1 0 0
... ... xo.&#x  |  2  1  0 |  0  0  1  2  0  0  0  0  0  0 | *  * *  * 24  *  *  * *  *  * *  * * | 0 1 0  1  0 0 0
x.x ... ...&#x  |  2  0  2 |  1  0  0  0  2  0  0  1  0  0 | *  * *  *  * 24  *  * *  *  * *  * * | 0 0 1  1  0 0 0
... x.x ...&#x  |  2  0  2 |  0  1  0  0  2  0  0  0  1  0 | *  * *  *  *  * 24  * *  *  * *  * * | 0 0 1  0  1 0 0
ooo3ooo4ooo&#x  |  1  1  1 |  0  0  0  1  1  0  1  0  0  0 | *  * *  *  *  *  * 48 *  *  * *  * * | 0 0 0  1  1 0 0
... .x.4.o.     |  0  4  0 |  0  0  0  0  0  4  0  0  0  0 | *  * *  *  *  *  *  * 6  *  * *  * * | 0 1 0  0  0 1 0
... .xx ...&#x  |  0  2  2 |  0  0  0  0  0  1  2  0  1  0 | *  * *  *  *  *  *  * * 24  * *  * * | 0 0 0  0  1 1 0
... ... .ox&#x  |  0  1  2 |  0  0  0  0  0  0  2  0  0  1 | *  * *  *  *  *  *  * *  * 24 *  * * | 0 0 0  1  0 1 0
..x3..x ...     |  0  0  6 |  0  0  0  0  0  0  0  3  3  0 | *  * *  *  *  *  *  * *  *  * 8  * * | 0 0 1  0  0 0 1
..x ... ..x     |  0  0  4 |  0  0  0  0  0  0  0  2  0  2 | *  * *  *  *  *  *  * *  *  * * 12 * | 0 0 0  1  0 0 1
... ..x4..x     |  0  0  8 |  0  0  0  0  0  0  0  0  4  4 | *  * *  *  *  *  *  * *  *  * *  * 6 | 0 0 0  0  0 1 1
----------------+----------+-------------------------------+--------------------------------------+----------------
x..3x..4x..      48  0  0 | 24 24 24  0  0  0  0  0  0  0 | 8 12 6  0  0  0  0  0 0  0  0 0  0 0 | 1 * *  *  * * *
... xx.4xo.&#x    8  4  0 |  0  4  4  8  0  4  0  0  0  0 | 0  0 1  4  4  0  0  0 1  0  0 0  0 0 | * 6 *  *  * * *
x.x3x.x ...&#x    6  0  6 |  3  3  0  0  6  0  0  3  3  0 | 1  0 0  0  0  3  3  0 0  0  0 1  0 0 | * * 8  *  * * *
xwx ... xox&#xt   4  2  4 |  2  0  2  4  4  0  4  2  0  2 | 0  1 0  0  2  2  0  4 0  0  2 0  1 0 | * * * 12  * * *
... xxx ...&#x    2  2  2 |  0  1  0  2  2  1  2  0  1  0 | 0  0 0  1  0  0  1  2 0  1  0 0  0 0 | * * *  * 24 * *
... .xx4.ox&#x    0  4  8 |  0  0  0  0  0  4  8  0  4  4 | 0  0 0  0  0  0  0  0 1  4  4 0  0 1 | * * *  *  * 6 *
..x3..x4..x       0  0 48 |  0  0  0  0  0  0  0 24 24 24 | 0  0 0  0  0  0  0  0 0  0  0 8 12 6 | * * *  *  * * 1

ox wx3xx4ox&#zx   → height = 0
(tegum sum of equatorial (w,x)-toe and gircope)

o. o.3o.4o.     | 24  * |  2  4  0  0  0  0 | 1  2  4  2  0  0  0  0  0 |  1  2  2 0 0
.o .o3.o4.o     |  * 96 |  0  1  1  1  1  1 | 0  1  1  1  1  1  1  1  1 |  1  1  1 1 1
----------------+-------+-------------------+---------------------------+-------------
.. .. x. ..     |  2  0 | 24  *  *  *  *  * | 1  0  2  0  0  0  0  0  0 |  0  1  2 0 0
oo oo3oo4oo&#x  |  1  1 |  * 96  *  *  *  * | 0  1  1  1  0  0  0  0  0 |  1  1  1 0 0
.x .. .. ..     |  0  2 |  *  * 48  *  *  * | 0  1  0  0  1  1  0  0  0 |  1  1  0 1 0
.. .x .. ..     |  0  2 |  *  *  * 48  *  * | 0  0  0  0  1  0  1  1  0 |  1  0  0 1 1
.. .. .x ..     |  0  2 |  *  *  *  * 48  * | 0  0  1  0  0  1  1  0  1 |  0  1  1 1 1
.. .. .. .x     |  0  2 |  *  *  *  *  * 48 | 0  0  0  1  0  0  0  1  1 |  1  0  1 0 1
----------------+-------+-------------------+---------------------------+-------------
.. .. x.4o.     |  4  0 |  4  0  0  0  0  0 | 6  *  *  *  *  *  *  *  * |  0  0  2 0 0
ox .. .. ..&#x  |  1  2 |  0  2  1  0  0  0 | * 48  *  *  *  *  *  *  * |  1  1  0 0 0
.. .. xx ..&#x  |  2  2 |  1  2  0  0  1  0 | *  * 48  *  *  *  *  *  * |  0  1  1 0 0
.. .. .. ox&#x  |  1  2 |  0  2  0  0  0  1 | *  *  * 48  *  *  *  *  * |  1  0  1 0 0
.x .x .. ..     |  0  4 |  0  0  2  2  0  0 | *  *  *  * 24  *  *  *  * |  1  0  0 1 0
.x .. .x ..     |  0  4 |  0  0  2  0  2  0 | *  *  *  *  * 24  *  *  * |  0  1  0 1 0
.. .x3.x ..     |  0  6 |  0  0  0  3  3  0 | *  *  *  *  *  * 16  *  * |  0  0  0 1 1
.. .x .. .x     |  0  4 |  0  0  0  2  0  2 | *  *  *  *  *  *  * 24  * |  1  0  0 0 1
.. .. .x4.x     |  0  8 |  0  0  0  0  4  4 | *  *  *  *  *  *  *  * 12 |  0  0  1 0 1
----------------+-------+-------------------+---------------------------+-------------
ox wx .. ox&#zx   2  8 |  0  8  4  4  0  4 | 0  4  0  4  2  0  0  2  0 | 12  *  * * *
ox .. xx ..&#x    2  4 |  1  4  2  0  2  0 | 0  2  2  0  0  1  0  0  0 |  * 24  * * *
.. .. xx4ox&#xt   4  8 |  4  8  0  0  4  4 | 1  0  4  4  0  0  0  0  1 |  *  * 12 * *
.x .x3.x ..       0 12 |  0  0  6  6  6  0 | 0  0  0  0  3  3  2  0  0 |  *  *  * 8 *
.. .x3.x4.x       0 48 |  0  0  0 24 24 24 | 0  0  0  0  0  0  8 12  6 |  *  *  * * 2

© 2004-2024
top of page