Acronym | hagy gircope |
Name | hexa-gyro-augmented gircope |
Face vector | 120, 312, 250, 58 |
Confer |
|
For this polychoron the augmentations of the ops of gircope by squipufs is to be done in this orientation ("gyro") that the squippies of squipuf adjoin to the cubes. Additionally, as these happen to be corealmic here, these even combine into esquidpies. – There is a different orientation of the squipufs as well ("ortho"), using then the trips to adjoin to the cubes. This then would result in hau gircope.
Incidence matrix according to Dynkin symbol
xwx3xxx4xox&xt → both heights = 1/2 (girco || pseudo (w,x)-toe || girco) o..3o..4o.. | 48 * * | 1 1 1 1 1 0 0 0 0 0 | 1 1 1 1 1 1 1 1 0 0 0 0 0 0 | 1 1 1 1 1 0 0 .o.3.o.4.o. | * 24 * | 0 0 0 2 0 2 2 0 0 0 | 0 0 0 2 1 0 0 2 1 2 1 0 0 0 | 0 1 0 1 2 1 0 ..o3..o4..o | * * 48 | 0 0 0 0 1 0 1 1 1 1 | 0 0 0 0 0 1 1 1 0 1 1 1 1 1 | 0 0 1 1 1 1 1 ----------------+----------+-------------------------------+--------------------------------------+---------------- x.. ... ... | 2 0 0 | 24 * * * * * * * * * | 1 1 0 0 0 1 0 0 0 0 0 0 0 0 | 1 0 1 1 0 0 0 ... x.. ... | 2 0 0 | * 24 * * * * * * * * | 1 0 1 1 0 0 1 0 0 0 0 0 0 0 | 1 1 1 0 1 0 0 ... ... x.. | 2 0 0 | * * 24 * * * * * * * | 0 1 1 0 1 0 0 0 0 0 0 0 0 0 | 1 1 0 1 0 0 0 oo.3oo.4oo.&#x | 1 1 0 | * * * 48 * * * * * * | 0 0 0 1 1 0 0 1 0 0 0 0 0 0 | 0 1 0 1 1 0 0 o.o3o.o4o.o&#x | 1 0 1 | * * * * 48 * * * * * | 0 0 0 0 0 1 1 1 0 0 0 0 0 0 | 0 0 1 1 1 0 0 ... .x. ... | 0 2 0 | * * * * * 24 * * * * | 0 0 0 1 0 0 0 0 1 1 0 0 0 0 | 0 1 0 0 1 1 0 .oo3.oo4.oo&#x | 0 1 1 | * * * * * * 48 * * * | 0 0 0 0 0 0 0 1 0 1 1 0 0 0 | 0 0 0 1 1 1 0 ..x ... ... | 0 0 2 | * * * * * * * 24 * * | 0 0 0 0 0 1 0 0 0 0 0 1 1 0 | 0 0 1 1 0 0 1 ... ..x ... | 0 0 2 | * * * * * * * * 24 * | 0 0 0 0 0 0 1 0 0 1 0 1 0 1 | 0 0 1 0 1 1 1 ... ... ..x | 0 0 2 | * * * * * * * * * 24 | 0 0 0 0 0 0 0 0 0 0 1 0 1 1 | 0 0 0 1 0 1 1 ----------------+----------+-------------------------------+--------------------------------------+---------------- x..3x.. ... | 6 0 0 | 3 3 0 0 0 0 0 0 0 0 | 8 * * * * * * * * * * * * * | 1 0 1 0 0 0 0 x.. ... x.. | 4 0 0 | 2 0 2 0 0 0 0 0 0 0 | * 12 * * * * * * * * * * * * | 1 0 0 1 0 0 0 ... x..4x.. | 8 0 0 | 0 4 4 0 0 0 0 0 0 0 | * * 6 * * * * * * * * * * * | 1 1 0 0 0 0 0 ... xx. ...&#x | 2 2 0 | 0 1 0 2 0 1 0 0 0 0 | * * * 24 * * * * * * * * * * | 0 1 0 0 1 0 0 ... ... xo.&#x | 2 1 0 | 0 0 1 2 0 0 0 0 0 0 | * * * * 24 * * * * * * * * * | 0 1 0 1 0 0 0 x.x ... ...&#x | 2 0 2 | 1 0 0 0 2 0 0 1 0 0 | * * * * * 24 * * * * * * * * | 0 0 1 1 0 0 0 ... x.x ...&#x | 2 0 2 | 0 1 0 0 2 0 0 0 1 0 | * * * * * * 24 * * * * * * * | 0 0 1 0 1 0 0 ooo3ooo4ooo&#x | 1 1 1 | 0 0 0 1 1 0 1 0 0 0 | * * * * * * * 48 * * * * * * | 0 0 0 1 1 0 0 ... .x.4.o. | 0 4 0 | 0 0 0 0 0 4 0 0 0 0 | * * * * * * * * 6 * * * * * | 0 1 0 0 0 1 0 ... .xx ...&#x | 0 2 2 | 0 0 0 0 0 1 2 0 1 0 | * * * * * * * * * 24 * * * * | 0 0 0 0 1 1 0 ... ... .ox&#x | 0 1 2 | 0 0 0 0 0 0 2 0 0 1 | * * * * * * * * * * 24 * * * | 0 0 0 1 0 1 0 ..x3..x ... | 0 0 6 | 0 0 0 0 0 0 0 3 3 0 | * * * * * * * * * * * 8 * * | 0 0 1 0 0 0 1 ..x ... ..x | 0 0 4 | 0 0 0 0 0 0 0 2 0 2 | * * * * * * * * * * * * 12 * | 0 0 0 1 0 0 1 ... ..x4..x | 0 0 8 | 0 0 0 0 0 0 0 0 4 4 | * * * * * * * * * * * * * 6 | 0 0 0 0 0 1 1 ----------------+----------+-------------------------------+--------------------------------------+---------------- x..3x..4x.. ♦ 48 0 0 | 24 24 24 0 0 0 0 0 0 0 | 8 12 6 0 0 0 0 0 0 0 0 0 0 0 | 1 * * * * * * ... xx.4xo.&#x ♦ 8 4 0 | 0 4 4 8 0 4 0 0 0 0 | 0 0 1 4 4 0 0 0 1 0 0 0 0 0 | * 6 * * * * * x.x3x.x ...&#x ♦ 6 0 6 | 3 3 0 0 6 0 0 3 3 0 | 1 0 0 0 0 3 3 0 0 0 0 1 0 0 | * * 8 * * * * xwx ... xox&#xt ♦ 4 2 4 | 2 0 2 4 4 0 4 2 0 2 | 0 1 0 0 2 2 0 4 0 0 2 0 1 0 | * * * 12 * * * ... xxx ...&#x ♦ 2 2 2 | 0 1 0 2 2 1 2 0 1 0 | 0 0 0 1 0 0 1 2 0 1 0 0 0 0 | * * * * 24 * * ... .xx4.ox&#x ♦ 0 4 8 | 0 0 0 0 0 4 8 0 4 4 | 0 0 0 0 0 0 0 0 1 4 4 0 0 1 | * * * * * 6 * ..x3..x4..x ♦ 0 0 48 | 0 0 0 0 0 0 0 24 24 24 | 0 0 0 0 0 0 0 0 0 0 0 8 12 6 | * * * * * * 1
ox wx3xx4ox&#zx → height = 0 (tegum sum of equatorial (w,x)-toe and gircope) o. o.3o.4o. | 24 * | 2 4 0 0 0 0 | 1 2 4 2 0 0 0 0 0 | 1 2 2 0 0 .o .o3.o4.o | * 96 | 0 1 1 1 1 1 | 0 1 1 1 1 1 1 1 1 | 1 1 1 1 1 ----------------+-------+-------------------+---------------------------+------------- .. .. x. .. | 2 0 | 24 * * * * * | 1 0 2 0 0 0 0 0 0 | 0 1 2 0 0 oo oo3oo4oo&#x | 1 1 | * 96 * * * * | 0 1 1 1 0 0 0 0 0 | 1 1 1 0 0 .x .. .. .. | 0 2 | * * 48 * * * | 0 1 0 0 1 1 0 0 0 | 1 1 0 1 0 .. .x .. .. | 0 2 | * * * 48 * * | 0 0 0 0 1 0 1 1 0 | 1 0 0 1 1 .. .. .x .. | 0 2 | * * * * 48 * | 0 0 1 0 0 1 1 0 1 | 0 1 1 1 1 .. .. .. .x | 0 2 | * * * * * 48 | 0 0 0 1 0 0 0 1 1 | 1 0 1 0 1 ----------------+-------+-------------------+---------------------------+------------- .. .. x.4o. | 4 0 | 4 0 0 0 0 0 | 6 * * * * * * * * | 0 0 2 0 0 ox .. .. ..&#x | 1 2 | 0 2 1 0 0 0 | * 48 * * * * * * * | 1 1 0 0 0 .. .. xx ..&#x | 2 2 | 1 2 0 0 1 0 | * * 48 * * * * * * | 0 1 1 0 0 .. .. .. ox&#x | 1 2 | 0 2 0 0 0 1 | * * * 48 * * * * * | 1 0 1 0 0 .x .x .. .. | 0 4 | 0 0 2 2 0 0 | * * * * 24 * * * * | 1 0 0 1 0 .x .. .x .. | 0 4 | 0 0 2 0 2 0 | * * * * * 24 * * * | 0 1 0 1 0 .. .x3.x .. | 0 6 | 0 0 0 3 3 0 | * * * * * * 16 * * | 0 0 0 1 1 .. .x .. .x | 0 4 | 0 0 0 2 0 2 | * * * * * * * 24 * | 1 0 0 0 1 .. .. .x4.x | 0 8 | 0 0 0 0 4 4 | * * * * * * * * 12 | 0 0 1 0 1 ----------------+-------+-------------------+---------------------------+------------- ox wx .. ox&#zx ♦ 2 8 | 0 8 4 4 0 4 | 0 4 0 4 2 0 0 2 0 | 12 * * * * ox .. xx ..&#x ♦ 2 4 | 1 4 2 0 2 0 | 0 2 2 0 0 1 0 0 0 | * 24 * * * .. .. xx4ox&#xt ♦ 4 8 | 4 8 0 0 4 4 | 1 0 4 4 0 0 0 0 1 | * * 12 * * .x .x3.x .. ♦ 0 12 | 0 0 6 6 6 0 | 0 0 0 0 3 3 2 0 0 | * * * 8 * .. .x3.x4.x ♦ 0 48 | 0 0 0 24 24 24 | 0 0 0 0 0 0 8 12 6 | * * * * 2
© 2004-2025 | top of page |