Acronym tipe, K-4.127
Name truncated-icosahedron prism
Segmentochoron display   ©
Circumradius sqrt[(31+9 sqrt(5))/8] = 2.527959
Dihedral angles
  • at {4} between hip and pip:   arccos(-sqrt[(5+2 sqrt(5))/15]) = 142.622632°
  • at {4} between hip and hip:   arccos(-sqrt(5)/3) = 138.189685°
  • at {6} between hip and ti:   90°
  • at {5} between pip and ti:   90°
Face vector 120, 240, 154, 34
Confer
general polytopal classes:
Wythoffian polychora   segmentochora  
External
links
hedrondude   wikipedia   polytopewiki

As abstract polytope tipe is isomorphic to tiggipe, thereby replacing pentagons by pentagrams resp. replacing ti by tiggy and pip by stip.


Incidence matrix according to Dynkin symbol

x x3x5o

. . . . | 120 |  1  1   1 |  1  2  2  1 |  2  1 1
--------+-----+-----------+-------------+--------
x . . . |   2 | 60  *   * |  1  2  0  0 |  2  1 0
. x . . |   2 |  * 60   * |  1  0  2  0 |  2  0 1
. . x . |   2 |  *  * 120 |  0  1  1  1 |  1  1 1
--------+-----+-----------+-------------+--------
x x . . |   4 |  2  2   0 | 30  *  *  * |  2  0 0
x . x . |   4 |  2  0   2 |  * 60  *  * |  1  1 0
. x3x . |   6 |  0  3   3 |  *  * 40  * |  1  0 1
. . x5o |   5 |  0  0   5 |  *  *  * 24 |  0  1 1
--------+-----+-----------+-------------+--------
x x3x .   12 |  6  6   6 |  3  3  2  0 | 20  * *
x . x5o   10 |  5  0  10 |  0  5  0  2 |  * 12 *
. x3x5o   60 |  0 30  60 |  0  0 20 12 |  *  * 2

snubbed forms: β2β3x5o

x x3x5/4o

. . .   . | 120 |  1  1   1 |  1  2  2  1 |  2  1 1
----------+-----+-----------+-------------+--------
x . .   . |   2 | 60  *   * |  1  2  0  0 |  2  1 0
. x .   . |   2 |  * 60   * |  1  0  2  0 |  2  0 1
. . x   . |   2 |  *  * 120 |  0  1  1  1 |  1  1 1
----------+-----+-----------+-------------+--------
x x .   . |   4 |  2  2   0 | 30  *  *  * |  2  0 0
x . x   . |   4 |  2  0   2 |  * 60  *  * |  1  1 0
. x3x   . |   6 |  0  3   3 |  *  * 40  * |  1  0 1
. . x5/4o |   5 |  0  0   5 |  *  *  * 24 |  0  1 1
----------+-----+-----------+-------------+--------
x x3x   .   12 |  6  6   6 |  3  3  2  0 | 20  * *
x . x5/4o   10 |  5  0  10 |  0  5  0  2 |  * 12 *
. x3x5/4o   60 |  0 30  60 |  0  0 20 12 |  *  * 2

xx3xx5oo&#x   → height = 1
(ti || ti)

o.3o.5o.    | 60  * |  1  2  1  0  0 |  2  1  1  2  0  0 | 1  2  1 0
.o3.o5.o    |  * 60 |  0  0  1  1  2 |  0  0  1  2  2  1 | 0  2  1 1
------------+-------+----------------+-------------------+----------
x. .. ..    |  2  0 | 30  *  *  *  * |  2  0  1  0  0  0 | 1  2  0 0
.. x. ..    |  2  0 |  * 60  *  *  * |  1  1  0  1  0  0 | 1  1  1 0
oo3oo5oo&#x |  1  1 |  *  * 60  *  * |  0  0  1  2  0  0 | 0  2  1 0
.x .. ..    |  0  2 |  *  *  * 30  * |  0  0  1  0  2  0 | 0  2  0 1
.. .x ..    |  0  2 |  *  *  *  * 60 |  0  0  0  1  1  1 | 0  1  1 1
------------+-------+----------------+-------------------+----------
x.3x. ..    |  6  0 |  3  3  0  0  0 | 20  *  *  *  *  * | 1  1  0 0
.. x.5o.    |  5  0 |  0  5  0  0  0 |  * 12  *  *  *  * | 1  0  1 0
xx .. ..&#x |  2  2 |  1  0  2  1  0 |  *  * 30  *  *  * | 0  2  0 0
.. xx ..&#x |  2  2 |  0  1  2  0  1 |  *  *  * 60  *  * | 0  1  1 0
.x3.x ..    |  0  6 |  0  0  0  3  3 |  *  *  *  * 20  * | 0  1  0 1
.. .x5.o    |  0  5 |  0  0  0  0  5 |  *  *  *  *  * 12 | 0  0  1 1
------------+-------+----------------+-------------------+----------
x.3x.5o.     60  0 | 30 60  0  0  0 | 20 12  0  0  0  0 | 1  *  * *
xx3xx ..&#x   6  6 |  3  3  6  3  3 |  1  0  3  3  1  0 | * 20  * *
.. xx5oo&#x   5  5 |  0  5  5  0  5 |  0  1  0  5  0  1 | *  * 12 *
.x3.x5.o      0 60 |  0  0  0 30 60 |  0  0  0  0 20 12 | *  *  * 1

© 2004-2024
top of page