Acronym idasridati Name id atop srid atop ti Dihedral angles (at margins) at {3} between oct and squippy:   arccos[-(1+3 sqrt(5))/8] = 164.477512° at {3} between oct and pap:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {3} between pap and squippy:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {4} between squippy and trip:   arccos[-sqrt(5/6)] = 155.905157° at {4} between tricu and trip:   arccos[-sqrt(5/6)] = 155.905157° at {3} between pap and trip:   150° at {5} between id and pap:   arccos[-(1+sqrt(5))/4] = 144° at {5} between pap and pap:   144° at {3} between id and oct:   arccos[-sqrt(5/8)] = 142.238756° at {3} between pap and tricu:   arccos[-sqrt(5/8)] = 142.238756° at {3} between oct and tricu:   arccos[-(3 sqrt(5)-1)/8] = 135.522488° at {6} between ti and tricu:   arccos[(3-sqrt(5))/sqrt(32)] = 82.238756° at {5} between pap and ti:   72° Confer related CRFs: xoxx3oxox5ooxo&#xt   blend-components: idasrid   sridati   general polytopal classes: bistratic lace towers

This CRF polychoron is a mere bistratic stack of segmentochora.

Incidence matrix according to Dynkin symbol

```oxx3xox5oxo&#xt   → height(1,2) = 1/2
height(2,3) = (1+sqrt(5))/4 = 0.809017
(id || pseudo srid || ti)

o..3o..5o..     | 30  *  * |  4   4  0  0   0  0  0 |  2  2  2  4  2  0  0  0  0  0  0  0  0 | 1  2  1  2  0  0  0 0
.o.3.o.5.o.     |  * 60  * |  0   2  2  2   2  0  0 |  0  0  2  1  2  1  2  1  2  1  2  0  0 | 0  1  2  1  1  2  1 0
..o3..o5..o     |  *  * 60 |  0   0  0  0   2  1  2 |  0  0  0  0  0  0  0  0  2  2  1  2  1 | 0  0  0  0  2  1  1 1
----------------+----------+------------------------+----------------------------------------+----------------------
... x.. ...     |  2  0  0 | 60   *  *  *   *  *  * |  1  1  0  1  0  0  0  0  0  0  0  0  0 | 1  1  0  1  0  0  0 0
oo.3oo.5oo.&#x  |  1  1  0 |  * 120  *  *   *  *  * |  0  0  1  1  1  0  0  0  0  0  0  0  0 | 0  1  1  1  0  0  0 0
.x. ... ...     |  0  2  0 |  *   * 60  *   *  *  * |  0  0  1  0  0  1  1  0  1  0  0  0  0 | 0  1  1  0  1  1  0 0
... ... .x.     |  0  2  0 |  *   *  * 60   *  *  * |  0  0  0  0  1  0  1  1  0  0  1  0  0 | 0  0  1  1  0  1  1 0
.oo3.oo5.oo&#x  |  0  1  1 |  *   *  *  * 120  *  * |  0  0  0  0  0  0  0  0  1  1  1  0  0 | 0  0  0  0  1  1  1 0
..x ... ...     |  0  0  2 |  *   *  *  *   * 30  * |  0  0  0  0  0  0  0  0  2  0  0  2  0 | 0  0  0  0  2  1  0 1
... ..x ...     |  0  0  2 |  *   *  *  *   *  * 60 |  0  0  0  0  0  0  0  0  0  1  0  1  1 | 0  0  0  0  1  0  1 1
----------------+----------+------------------------+----------------------------------------+----------------------
o..3x.. ...     |  3  0  0 |  3   0  0  0   0  0  0 | 20  *  *  *  *  *  *  *  *  *  *  *  * | 1  1  0  0  0  0  0 0
... x..5o..     |  5  0  0 |  5   0  0  0   0  0  0 |  * 12  *  *  *  *  *  *  *  *  *  *  * | 1  0  0  1  0  0  0 0
ox. ... ...&#x  |  1  2  0 |  0   2  1  0   0  0  0 |  *  * 60  *  *  *  *  *  *  *  *  *  * | 0  1  1  0  0  0  0 0
... xo. ...&#x  |  2  1  0 |  1   2  0  0   0  0  0 |  *  *  * 60  *  *  *  *  *  *  *  *  * | 0  1  0  1  0  0  0 0
... ... ox.&#x  |  1  2  0 |  0   2  0  1   0  0  0 |  *  *  *  * 60  *  *  *  *  *  *  *  * | 0  0  1  1  0  0  0 0
.x.3.o. ...     |  0  3  0 |  0   0  3  0   0  0  0 |  *  *  *  *  * 20  *  *  *  *  *  *  * | 0  1  0  0  1  0  0 0
.x. ... .x.     |  0  4  0 |  0   0  2  2   0  0  0 |  *  *  *  *  *  * 30  *  *  *  *  *  * | 0  0  1  0  0  1  0 0
... .o.5.x.     |  0  5  0 |  0   0  0  5   0  0  0 |  *  *  *  *  *  *  * 12  *  *  *  *  * | 0  0  0  1  0  0  1 0
.xx ... ...&#x  |  0  2  2 |  0   0  1  0   2  1  0 |  *  *  *  *  *  *  *  * 60  *  *  *  * | 0  0  0  0  1  1  0 0
... .ox ...&#x  |  0  1  2 |  0   0  0  0   2  0  1 |  *  *  *  *  *  *  *  *  * 60  *  *  * | 0  0  0  0  1  0  1 0
... ... .xo&#x  |  0  2  1 |  0   0  0  1   2  0  0 |  *  *  *  *  *  *  *  *  *  * 60  *  * | 0  0  0  0  0  1  1 0
..x3..x ...     |  0  0  6 |  0   0  0  0   0  3  3 |  *  *  *  *  *  *  *  *  *  *  * 20  * | 0  0  0  0  1  0  0 1
... ..x5..o     |  0  0  5 |  0   0  0  0   0  0  5 |  *  *  *  *  *  *  *  *  *  *  *  * 12 | 0  0  0  0  0  0  1 1
----------------+----------+------------------------+----------------------------------------+----------------------
o..3x..5o..     ♦ 30  0  0 | 60   0  0  0   0  0  0 | 20 12  0  0  0  0  0  0  0  0  0  0  0 | 1  *  *  *  *  *  * *
ox.3xo. ...&#x  ♦  3  3  0 |  3   6  3  0   0  0  0 |  1  0  3  3  0  1  0  0  0  0  0  0  0 | * 20  *  *  *  *  * *
ox. ... ox.&#x  ♦  1  4  0 |  0   4  2  2   0  0  0 |  0  0  2  0  2  0  1  0  0  0  0  0  0 | *  * 30  *  *  *  * *
... xo.5ox.&#x  ♦  5  5  0 |  5  10  0  5   0  0  0 |  0  1  0  5  5  0  0  1  0  0  0  0  0 | *  *  * 12  *  *  * *
.xx3.ox ...&#x  ♦  0  3  6 |  0   0  3  0   6  3  3 |  0  0  0  0  0  1  0  0  3  3  0  1  0 | *  *  *  * 20  *  * *
.xx ... .xo&#x  ♦  0  4  2 |  0   0  2  2   4  1  0 |  0  0  0  0  0  0  1  0  2  0  2  0  0 | *  *  *  *  * 30
... .ox5.xo&#x  ♦  0  5  5 |  0   0  0  5  10  0  5 |  0  0  0  0  0  0  0  1  0  5  5  0  1 | *  *  *  *  *  * 12 *
..x3..x5..o     ♦  0  0 60 |  0   0  0  0   0 30 60 |  0  0  0  0  0  0  0  0  0  0  0 20 12 | *  *  *  *  *  *  * 1
```