Acronym twagy tiddip Name twelve-gyro-augmented truncated-icosidodecahedral prism Dihedral angles at {3} between squippy and B-trip:   arccos(-sqrt[9+3 sqrt(5)]/4) = 172.238756° at {4} between pecu and B-trip:   arccos(-sqrt[(3+sqrt(5))/6]) = 159.094843° at {3} between pecu and squippy:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {4} between A-trip and B-trip:   arccos(-2/sqrt(5)) = 153.434949° at {5} between pecu and pecu:   144° at {4} between squippy and squippy:   arccos(-4/5) = 143.130102° at {10} between pecu and tid:   108° at {3} between tid and A-trip:   90° Confer blend-components: tiddip   pepuf   related CRFs: twau tiddip   general polytopal classes: bistratic lace towers

For this polychoron the augmentations of the dips of tiddip by pepufs is to be done in this orientation ("gyro") that the squippies of pepuf pairwise adjoin to each other back to back. – There is a different orientation of the pepufs as well ("ortho"), using then the trips to adjoin pairwise back to back. This then would result in twau tiddip.

Incidence matrix according to Dynkin symbol

```oa3xx5xo xo&#zx   → height = 0, a = 3/sqrt(5) = 1.341641
(tegum sum of tiddip and (a,x)-ti)

o.3o.5o. o.    | 120  * |   2  1  1   2  0 |  1  2  2  1   2   2   2  0 | 1  1  2  2  2
.o3.o5.o .o    |   * 60 |   0  0  0   4  2 |  0  0  0  0   4   2   2  1 | 0  0  2  2  1
---------------+--------+------------------+----------------------------+--------------
.. x. .. ..    |   2  0 | 120  *  *   *  * |  1  1  1  0   1   0   0  0 | 1  1  1  1  0
.. .. x. ..    |   2  0 |   * 60  *   *  * |  0  2  0  1   0   2   0  0 | 1  0  2  0  2
.. .. .. x.    |   2  0 |   *  * 60   *  * |  0  0  2  1   0   0   2  0 | 0  1  0  1  1
oo3oo5oo oo&#x |   1  1 |   *  *  * 240  * |  0  0  0  0   1   1   1  0 | 0  0  1  1  1
.. .x .. ..    |   0  2 |   *  *  *   * 60 |  0  0  0  0   2   0   0  1 | 0  0  2  1  0
---------------+--------+------------------+----------------------------+--------------
o.3x. .. ..    |   3  0 |   3  0  0   0  0 | 40  *  *  *   *   *   *  * | 1  1  0  0  0
.. x.5x. ..    |  10  0 |   5  5  0   0  0 |  * 24  *  *   *   *   *  * | 1  0  1  0  0
.. x. .. x.    |   4  0 |   2  0  2   0  0 |  *  * 60  *   *   *   *  * | 0  1  0  1  0
.. .. x. x.    |   4  0 |   0  2  2   0  0 |  *  *  * 30   *   *   *  * | 0  0  0  0  2
.. xx .. ..&#x |   2  2 |   1  0  0   2  1 |  *  *  *  * 120   *   *  * | 0  0  1  1  0
.. .. xo ..&#x |   2  1 |   0  1  0   2  0 |  *  *  *  *   * 120   *  * | 0  0  1  0  1
.. .. .. xo&#x |   2  1 |   0  0  1   2  0 |  *  *  *  *   *   * 120  * | 0  0  0  1  1
.. .x5.o ..    |   0  5 |   0  0  0   0  5 |  *  *  *  *   *   *   * 12 | 0  0  2  0  0
---------------+--------+------------------+----------------------------+--------------
o.3x.5x. ..    ♦  60  0 |  60 30  0   0  0 | 20 12  0  0   0   0   0  0 | 2  *  *  *  *
o.3x. .. x.    ♦   6  0 |   6  0  3   0  0 |  2  0  3  0   0   0   0  0 | * 20  *  *  *  (type A)
.. xx5xo ..&#x ♦  10  5 |   5  5  0  10  5 |  0  1  0  0   5   5   0  1 | *  * 24  *  *
.. xx .. xo&#x ♦   4  2 |   2  0  2   4  1 |  0  0  1  0   2   0   2  0 | *  *  * 60  *  (type B)
.. .. xo xo&#x ♦   4  1 |   0  2  2   4  0 |  0  0  0  1   0   2   2  0 | *  *  *  * 60
```