Acronym twagy tiddip
Name twelve-gyro-augmented truncated-icosidodecahedral prism
Dihedral angles
  • at {3} between squippy and B-trip:   arccos(-sqrt[9+3 sqrt(5)]/4) = 172.238756°
  • at {4} between pecu and B-trip:   arccos(-sqrt[(3+sqrt(5))/6]) = 159.094843°
  • at {3} between pecu and squippy:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244°
  • at {4} between A-trip and B-trip:   arccos(-2/sqrt(5)) = 153.434949°
  • at {5} between pecu and pecu:   144°
  • at {4} between squippy and squippy:   arccos(-4/5) = 143.130102°
  • at {10} between pecu and tid:   108°
  • at {3} between tid and A-trip:   90°
Confer
blend-components:
tiddip   pepuf  
related CRFs:
twau tiddip  
general polytopal classes:
bistratic lace towers  

For this polychoron the augmentations of the dips of tiddip by pepufs is to be done in this orientation ("gyro") that the squippies of pepuf pairwise adjoin to each other back to back. – There is a different orientation of the pepufs as well ("ortho"), using then the trips to adjoin pairwise back to back. This then would result in twau tiddip.


Incidence matrix according to Dynkin symbol

oa3xx5xo xo&#zx   → height = 0, a = 3/sqrt(5) = 1.341641
(tegum sum of tiddip and (a,x)-ti)

o.3o.5o. o.    | 120  * |   2  1  1   2  0 |  1  2  2  1   2   2   2  0 | 1  1  2  2  2
.o3.o5.o .o    |   * 60 |   0  0  0   4  2 |  0  0  0  0   4   2   2  1 | 0  0  2  2  1
---------------+--------+------------------+----------------------------+--------------
.. x. .. ..    |   2  0 | 120  *  *   *  * |  1  1  1  0   1   0   0  0 | 1  1  1  1  0
.. .. x. ..    |   2  0 |   * 60  *   *  * |  0  2  0  1   0   2   0  0 | 1  0  2  0  2
.. .. .. x.    |   2  0 |   *  * 60   *  * |  0  0  2  1   0   0   2  0 | 0  1  0  1  1
oo3oo5oo oo&#x |   1  1 |   *  *  * 240  * |  0  0  0  0   1   1   1  0 | 0  0  1  1  1
.. .x .. ..    |   0  2 |   *  *  *   * 60 |  0  0  0  0   2   0   0  1 | 0  0  2  1  0
---------------+--------+------------------+----------------------------+--------------
o.3x. .. ..    |   3  0 |   3  0  0   0  0 | 40  *  *  *   *   *   *  * | 1  1  0  0  0
.. x.5x. ..    |  10  0 |   5  5  0   0  0 |  * 24  *  *   *   *   *  * | 1  0  1  0  0
.. x. .. x.    |   4  0 |   2  0  2   0  0 |  *  * 60  *   *   *   *  * | 0  1  0  1  0
.. .. x. x.    |   4  0 |   0  2  2   0  0 |  *  *  * 30   *   *   *  * | 0  0  0  0  2
.. xx .. ..&#x |   2  2 |   1  0  0   2  1 |  *  *  *  * 120   *   *  * | 0  0  1  1  0
.. .. xo ..&#x |   2  1 |   0  1  0   2  0 |  *  *  *  *   * 120   *  * | 0  0  1  0  1
.. .. .. xo&#x |   2  1 |   0  0  1   2  0 |  *  *  *  *   *   * 120  * | 0  0  0  1  1
.. .x5.o ..    |   0  5 |   0  0  0   0  5 |  *  *  *  *   *   *   * 12 | 0  0  2  0  0
---------------+--------+------------------+----------------------------+--------------
o.3x.5x. ..      60  0 |  60 30  0   0  0 | 20 12  0  0   0   0   0  0 | 2  *  *  *  *
o.3x. .. x.       6  0 |   6  0  3   0  0 |  2  0  3  0   0   0   0  0 | * 20  *  *  *  (type A)
.. xx5xo ..&#x   10  5 |   5  5  0  10  5 |  0  1  0  0   5   5   0  1 | *  * 24  *  *
.. xx .. xo&#x    4  2 |   2  0  2   4  1 |  0  0  1  0   2   0   2  0 | *  *  * 60  *  (type B)
.. .. xo xo&#x    4  1 |   0  2  2   4  0 |  0  0  0  1   0   2   2  0 | *  *  *  * 60

© 2004-2018
top of page