Acronym tiddip, K-4.130
Name truncated-dodecahedron prism
Segmentochoron display
Circumradius sqrt[(39+15 sqrt(5))/8] = 3.011250
Dihedral angles
  • at {4} between dip and trip:   arccos(-sqrt[(5+2 sqrt(5))/15]) = 142.622632°
  • at {4} between dip and dip:   arccos(-1/sqrt(5)) = 116.565051°
  • at {10} between dip and tid:   90°
  • at {3} between tid and trip:   90°
Face vector 120, 240, 154, 34
Confer
general polytopal classes:
Wythoffian polychora   segmentochora  
External
links
hedrondude   wikipedia   polytopewiki

As abstract polytope tiddip is isomorphic to quit gissiddip, thereby replacing decagons by decagrams, resp. replacing tid by quit gissid and dip by stiddip.


Incidence matrix according to Dynkin symbol

x o3x5x

. . . . | 120 |  1   2  1 |  2  1  1  2 |  1  2 1
--------+-----+-----------+-------------+--------
x . . . |   2 | 60   *  * |  2  1  0  0 |  1  2 0
. . x . |   2 |  * 120  * |  1  0  1  1 |  1  1 1
. . . x |   2 |  *   * 60 |  0  1  0  2 |  0  2 1
--------+-----+-----------+-------------+--------
x . x . |   4 |  2   2  0 | 60  *  *  * |  1  1 0
x . . x |   4 |  2   0  2 |  * 30  *  * |  0  2 0
. o3x . |   3 |  0   3  0 |  *  * 40  * |  1  0 1
. . x5x |  10 |  0   5  5 |  *  *  * 24 |  0  1 1
--------+-----+-----------+-------------+--------
x o3x .    6 |  3   6  0 |  3  0  2  0 | 20  * *
x . x5x   20 | 10  10 10 |  5  5  0  2 |  * 12 *
. o3x5x   60 |  0  60 30 |  0  0 20 12 |  *  * 2

x o3/2x5x

. .   . . | 120 |  1   2  1 |  2  1  1  2 |  1  2 1
----------+-----+-----------+-------------+--------
x .   . . |   2 | 60   *  * |  2  1  0  0 |  1  2 0
. .   x . |   2 |  * 120  * |  1  0  1  1 |  1  1 1
. .   . x |   2 |  *   * 60 |  0  1  0  2 |  0  2 1
----------+-----+-----------+-------------+--------
x .   x . |   4 |  2   2  0 | 60  *  *  * |  1  1 0
x .   . x |   4 |  2   0  2 |  * 30  *  * |  0  2 0
. o3/2x . |   3 |  0   3  0 |  *  * 40  * |  1  0 1
. .   x5x |  10 |  0   5  5 |  *  *  * 24 |  0  1 1
----------+-----+-----------+-------------+--------
x o3/2x .    6 |  3   6  0 |  3  0  2  0 | 20  * *
x .   x5x   20 | 10  10 10 |  5  5  0  2 |  * 12 *
. o3/2x5x   60 |  0  60 30 |  0  0 20 12 |  *  * 2

oo3xx5xx&#x   → height = 1
(tid || tid)

o.3o.5o.    | 60  * |  2  1  1  0  0 |  1  2  2  1  0  0 | 1  1  2 0
.o3.o5.o    |  * 60 |  0  0  1  2  1 |  0  0  2  1  1  2 | 0  1  2 1
------------+-------+----------------+-------------------+----------
.. x. ..    |  2  0 | 60  *  *  *  * |  1  1  1  0  0  0 | 1  1  1 0
.. .. x.    |  2  0 |  * 30  *  *  * |  0  2  0  1  0  0 | 1  0  2 0
oo3oo5oo&#x |  1  1 |  *  * 60  *  * |  0  0  2  1  0  0 | 0  1  2 0
.. .x ..    |  0  2 |  *  *  * 60  * |  0  0  1  0  1  1 | 0  1  1 1
.. .. .x    |  0  2 |  *  *  *  * 30 |  0  0  0  1  0  2 | 0  0  2 1
------------+-------+----------------+-------------------+----------
o.3x. ..    |  3  0 |  3  0  0  0  0 | 20  *  *  *  *  * | 1  1  0 0
.. x.5x.    | 10  0 |  5  5  0  0  0 |  * 12  *  *  *  * | 1  0  1 0
.. xx ..&#x |  2  2 |  1  0  2  1  0 |  *  * 60  *  *  * | 0  1  1 0
.. .. xx&#x |  2  2 |  0  1  2  0  1 |  *  *  * 30  *  * | 0  0  2 0
.o3.x ..    |  0  3 |  0  0  0  3  0 |  *  *  *  * 20  * | 0  1  0 1
.. .x5.x    |  0 10 |  0  0  0  5  5 |  *  *  *  *  * 12 | 0  0  1 1
------------+-------+----------------+-------------------+----------
o.3x.5x.     60  0 | 60 30  0  0  0 | 20 12  0  0  0  0 | 1  *  * *
oo3xx ..&#x   3  3 |  3  0  3  3  0 |  1  0  3  0  1  0 | * 20  * *
.. xx5xx&#x  10 10 |  5  5 10  5  5 |  0  1  5  5  0  1 | *  * 12 *
.o3.x5.x      0 60 |  0  0  0 60 30 |  0  0  0  0 20 12 | *  *  * 1

© 2004-2024
top of page