Acronym tiddip, K-4.130 Name truncated-dodecahedron prism Segmentochoron display Circumradius sqrt[(39+15 sqrt(5))/8] = 3.011250 Dihedral angles at {4} between dip and trip:   arccos(-sqrt[(5+2 sqrt(5))/15]) = 142.622632° at {4} between dip and dip:   arccos(-1/sqrt(5)) = 116.565051° at {10} between dip and tid:   90° at {3} between tid and trip:   90° Confer general polytopal classes: segmentochora Externallinks

As abstract polytope tiddip is isomorphic to quit gissiddip, thereby replacing decagons by decagrams, resp. replacing tid by quit gissid and dip by stiddip.

Incidence matrix according to Dynkin symbol

```x o3x5x

. . . . | 120 |  1   2  1 |  2  1  1  2 |  1  2 1
--------+-----+-----------+-------------+--------
x . . . |   2 | 60   *  * |  2  1  0  0 |  1  2 0
. . x . |   2 |  * 120  * |  1  0  1  1 |  1  1 1
. . . x |   2 |  *   * 60 |  0  1  0  2 |  0  2 1
--------+-----+-----------+-------------+--------
x . x . |   4 |  2   2  0 | 60  *  *  * |  1  1 0
x . . x |   4 |  2   0  2 |  * 30  *  * |  0  2 0
. o3x . |   3 |  0   3  0 |  *  * 40  * |  1  0 1
. . x5x |  10 |  0   5  5 |  *  *  * 24 |  0  1 1
--------+-----+-----------+-------------+--------
x o3x . ♦   6 |  3   6  0 |  3  0  2  0 | 20  * *
x . x5x ♦  20 | 10  10 10 |  5  5  0  2 |  * 12 *
. o3x5x ♦  60 |  0  60 30 |  0  0 20 12 |  *  * 2
```

```x o3/2x5x

. .   . . | 120 |  1   2  1 |  2  1  1  2 |  1  2 1
----------+-----+-----------+-------------+--------
x .   . . |   2 | 60   *  * |  2  1  0  0 |  1  2 0
. .   x . |   2 |  * 120  * |  1  0  1  1 |  1  1 1
. .   . x |   2 |  *   * 60 |  0  1  0  2 |  0  2 1
----------+-----+-----------+-------------+--------
x .   x . |   4 |  2   2  0 | 60  *  *  * |  1  1 0
x .   . x |   4 |  2   0  2 |  * 30  *  * |  0  2 0
. o3/2x . |   3 |  0   3  0 |  *  * 40  * |  1  0 1
. .   x5x |  10 |  0   5  5 |  *  *  * 24 |  0  1 1
----------+-----+-----------+-------------+--------
x o3/2x . ♦   6 |  3   6  0 |  3  0  2  0 | 20  * *
x .   x5x ♦  20 | 10  10 10 |  5  5  0  2 |  * 12 *
. o3/2x5x ♦  60 |  0  60 30 |  0  0 20 12 |  *  * 2
```

```oo3xx5xx&#x   → height = 1
(tid || tid)

o.3o.5o.    | 60  * |  2  1  1  0  0 |  1  2  2  1  0  0 | 1  1  2 0
.o3.o5.o    |  * 60 |  0  0  1  2  1 |  0  0  2  1  1  2 | 0  1  2 1
------------+-------+----------------+-------------------+----------
.. x. ..    |  2  0 | 60  *  *  *  * |  1  1  1  0  0  0 | 1  1  1 0
.. .. x.    |  2  0 |  * 30  *  *  * |  0  2  0  1  0  0 | 1  0  2 0
oo3oo5oo&#x |  1  1 |  *  * 60  *  * |  0  0  2  1  0  0 | 0  1  2 0
.. .x ..    |  0  2 |  *  *  * 60  * |  0  0  1  0  1  1 | 0  1  1 1
.. .. .x    |  0  2 |  *  *  *  * 30 |  0  0  0  1  0  2 | 0  0  2 1
------------+-------+----------------+-------------------+----------
o.3x. ..    |  3  0 |  3  0  0  0  0 | 20  *  *  *  *  * | 1  1  0 0
.. x.5x.    | 10  0 |  5  5  0  0  0 |  * 12  *  *  *  * | 1  0  1 0
.. xx ..&#x |  2  2 |  1  0  2  1  0 |  *  * 60  *  *  * | 0  1  1 0
.. .. xx&#x |  2  2 |  0  1  2  0  1 |  *  *  * 30  *  * | 0  0  2 0
.o3.x ..    |  0  3 |  0  0  0  3  0 |  *  *  *  * 20  * | 0  1  0 1
.. .x5.x    |  0 10 |  0  0  0  5  5 |  *  *  *  *  * 12 | 0  0  1 1
------------+-------+----------------+-------------------+----------
o.3x.5x.    ♦ 60  0 | 60 30  0  0  0 | 20 12  0  0  0  0 | 1  *  * *
oo3xx ..&#x ♦  3  3 |  3  0  3  3  0 |  1  0  3  0  1  0 | * 20  * *
.. xx5xx&#x ♦ 10 10 |  5  5 10  5  5 |  0  1  5  5  0  1 | *  * 12 *
.o3.x5.x    ♦  0 60 |  0  0  0 60 30 |  0  0  0  0 20 12 | *  *  * 1
```