Acronym soxeb
Name small exiated bi-enneazetton,
heptellated enneazetton,
expanded enneazetton,
lattice A8 contact polytope (span of its roots),
equatorial cross-section of rene-first riv
Circumradius 1
Inradius
wrt. oca
3/4 = 0.75
Inradius
wrt. hopip
3/sqrt(28) = 0.566947
Inradius
wrt. trahix
1/2 = 0.5
Inradius
wrt. tetpen
3/sqrt(40) = 0.474342
Lace city
in approx. ASCII-art
  o   h  		-- o3o3o3o3o3o3x (oca)
         
H   S   h		-- x3o3o3o3o3o3x (suph)
         
  H   o  		-- x3o3o3o3o3o3o (dual oca)

where:
o - o3o3o3o3o3o (point)
h - x3o3o3o3o3o (hop)
S - x3o3o3o3o3x (staf)
H - o3o3o3o3o3x (dual hop)
Volume 429/7168 = 0.059849
Face vector 72, 504, 1764, 3780, 5208, 4536, 2286, 510
Confer
more general:
xPo3o...o3oPxQ*a  
uniform relative:
fy  
related segmentozetta:
ocasuph  
general polytopal classes:
Wythoffian polyzetta   segmentozetta   fundamental lace prisms  
analogs:
maximal epanded simplex eSn  
External
links
wikipedia

Incidence matrix according to Dynkin symbol

x3o3o3o3o3o3o3x

. . . . . . . . | 72 |   7   7 |  21  42  21 |  35  105  105  35 |  35  140  210  140  35 |  21 105  210  210 105  21 |  7  42 105 140 105  42  7 | 1  7 21  35  35 21  7 1
----------------+----+---------+-------------+-------------------+------------------------+---------------------------+---------------------------+------------------------
x . . . . . . . |  2 | 252   * |   6   6   0 |  15   30   15   0 |  20   60   60   20   0 |  15  60   90   60  15   0 |  6  30  60  60  30   6  0 | 1  6 15  20  15  6  1 0
. . . . . . . x |  2 |   * 252 |   0   6   6 |   0   15   30  15 |   0   20   60   60  20 |   0  15   60   90  60  15 |  0   6  30  60  60  30  6 | 0  1  6  15  20 15  6 1
----------------+----+---------+-------------+-------------------+------------------------+---------------------------+---------------------------+------------------------
x3o . . . . . . |  3 |   3   0 | 504   *   * |   5    5    0   0 |  10   20   10    0   0 |  10  30   30   10   0   0 |  5  20  30  20   5   0  0 | 1  5 10  10   5  1  0 0
x . . . . . . x |  4 |   2   2 |   * 756   * |   0    5    5   0 |   0   10   20   10   0 |   0  10   30   30  10   0 |  0   5  20  30  20   5  0 | 0  1  5  10  10  5  1 0
. . . . . . o3x |  3 |   0   3 |   *   * 504 |   0    0    5   5 |   0    0   10   20  10 |   0   0   10   30  30  10 |  0   0   5  20  30  20  5 | 0  0  1   5  10 10  5 1
----------------+----+---------+-------------+-------------------+------------------------+---------------------------+---------------------------+------------------------
x3o3o . . . . .   4 |   6   0 |   4   0   0 | 630    *    *   * |   4    4    0    0   0 |   6  12    6    0   0   0 |  4  12  12   4   0   0  0 | 1  4  6   4   1  0  0 0
x3o . . . . . x   6 |   6   3 |   2   3   0 |   * 1260    *   * |   0    4    4    0   0 |   0   6   12    6   0   0 |  0   4  12  12   4   0  0 | 0  1  4   6   4  1  0 0
x . . . . . o3x   6 |   3   6 |   0   3   2 |   *    * 1260   * |   0    0    4    4   0 |   0   0    6   12   6   0 |  0   0   4  12  12   4  0 | 0  0  1   4   6  4  1 0
. . . . . o3o3x   4 |   0   6 |   0   0   4 |   *    *    * 630 |   0    0    0    4   4 |   0   0    0    6  12   6 |  0   0   0   4  12  12  4 | 0  0  0   1   4  6  4 1
----------------+----+---------+-------------+-------------------+------------------------+---------------------------+---------------------------+------------------------
x3o3o3o . . . .   5 |  10   0 |  10   0   0 |   5    0    0   0 | 504    *    *    *   * |   3   3    0    0   0   0 |  3   6   3   0   0   0  0 | 1  3  3   1   0  0  0 0
x3o3o . . . . x   8 |  12   4 |   8   6   0 |   2    4    0   0 |   * 1260    *    *   * |   0   3    3    0   0   0 |  0   3   6   3   0   0  0 | 0  1  3   3   1  0  0 0
x3o . . . . o3x   9 |   9   9 |   3   9   3 |   0    3    3   0 |   *    * 1680    *   * |   0   0    3    3   0   0 |  0   0   3   6   3   0  0 | 0  0  1   3   3  1  0 0
x . . . . o3o3x   8 |   4  12 |   0   6   8 |   0    0    4   2 |   *    *    * 1260   * |   0   0    0    3   3   0 |  0   0   0   3   6   3  0 | 0  0  0   1   3  3  1 0
. . . . o3o3o3x   5 |   0  10 |   0   0  10 |   0    0    0   5 |   *    *    *    * 504 |   0   0    0    0   3   3 |  0   0   0   0   3   6  3 | 0  0  0   0   1  3  3 1
----------------+----+---------+-------------+-------------------+------------------------+---------------------------+---------------------------+------------------------
x3o3o3o3o . . .   6 |  15   0 |  20   0   0 |  15    0    0   0 |   6    0    0    0   0 | 252   *    *    *   *   * |  2   2   0   0   0   0  0 | 1  2  1   0   0  0  0 0
x3o3o3o . . . x  10 |  20   5 |  20  10   0 |  10   10    0   0 |   2    5    0    0   0 |   * 756    *    *   *   * |  0   2   2   0   0   0  0 | 0  1  2   1   0  0  0 0
x3o3o . . . o3x  12 |  18  12 |  12  18   4 |   3   12    6   0 |   0    3    4    0   0 |   *   * 1260    *   *   * |  0   0   2   2   0   0  0 | 0  0  1   2   1  0  0 0
x3o . . . o3o3x  12 |  12  18 |   4  18  12 |   0    6   12   3 |   0    0    4    3   0 |   *   *    * 1260   *   * |  0   0   0   2   2   0  0 | 0  0  0   1   2  1  0 0
x . . . o3o3o3x  10 |   5  20 |   0  10  20 |   0    0   10  10 |   0    0    0    5   2 |   *   *    *    * 756   * |  0   0   0   0   2   2  0 | 0  0  0   0   1  2  1 0
. . . o3o3o3o3x   6 |   0  15 |   0   0  20 |   0    0    0  15 |   0    0    0    0   6 |   *   *    *    *   * 252 |  0   0   0   0   0   2  2 | 0  0  0   0   0  1  2 1
----------------+----+---------+-------------+-------------------+------------------------+---------------------------+---------------------------+------------------------
x3o3o3o3o3o . .   7 |  21   0 |  35   0   0 |  35    0    0   0 |  21    0    0    0   0 |   7   0    0    0   0   0 | 72   *   *   *   *   *  * | 1  1  0   0   0  0  0 0
x3o3o3o3o . . x  12 |  30   6 |  40  15   0 |  30   20    0   0 |  12   15    0    0   0 |   2   6    0    0   0   0 |  * 252   *   *   *   *  * | 0  1  1   0   0  0  0 0
x3o3o3o . . o3x  15 |  30  15 |  30  30   5 |  15   30   10   0 |   3   15   10    0   0 |   0   3    5    0   0   0 |  *   * 504   *   *   *  * | 0  0  1   1   0  0  0 0
x3o3o . . o3o3x  16 |  24  24 |  16  36  16 |   4   24   24   4 |   0    6   16    6   0 |   0   0    4    4   0   0 |  *   *   * 630   *   *  * | 0  0  0   1   1  0  0 0
x3o . . o3o3o3x  15 |  15  30 |   5  30  30 |   0   10   30  15 |   0    0   10   15   3 |   0   0    0    5   3   0 |  *   *   *   * 504   *  * | 0  0  0   0   1  1  0 0
x . . o3o3o3o3x  12 |   6  30 |   0  15  40 |   0    0   20  30 |   0    0    0   15  12 |   0   0    0    0   6   2 |  *   *   *   *   * 252  * | 0  0  0   0   0  1  1 0
. . o3o3o3o3o3x   7 |   0  21 |   0   0  35 |   0    0    0  35 |   0    0    0    0  21 |   0   0    0    0   0   7 |  *   *   *   *   *   * 72 | 0  0  0   0   0  0  1 1
----------------+----+---------+-------------+-------------------+------------------------+---------------------------+---------------------------+------------------------
x3o3o3o3o3o3o .   8 |  28   0 |  56   0   0 |  70    0    0   0 |  56    0    0    0   0 |  28   0    0    0   0   0 |  8   0   0   0   0   0  0 | 9  *  *   *   *  *  * *
x3o3o3o3o3o . x  14 |  42   7 |  70  21   0 |  70   35    0   0 |  42   35    0    0   0 |  14  21    0    0   0   0 |  2   7   0   0   0   0  0 | * 36  *   *   *  *  * *
x3o3o3o3o . o3x  18 |  45  18 |  60  45   6 |  45   60   15   0 |  18   45   20    0   0 |   3  18   15    0   0   0 |  0   3   6   0   0   0  0 | *  * 84   *   *  *  * *
x3o3o3o . o3o3x  20 |  40  30 |  40  60  20 |  20   60   40   5 |   4   30   40   10   0 |   0   6   20   10   0   0 |  0   0   4   5   0   0  0 | *  *  * 126   *  *  * *
x3o3o . o3o3o3x  20 |  30  40 |  20  60  40 |   5   40   60  20 |   0   10   40   30   4 |   0   0   10   20   6   0 |  0   0   0   5   4   0  0 | *  *  *   * 126  *  * *
x3o . o3o3o3o3x  18 |  18  45 |   6  45  60 |   0   15   60  45 |   0    0   20   45  18 |   0   0    0   15  18   3 |  0   0   0   0   6   3  0 | *  *  *   *   * 84  * *
x . o3o3o3o3o3x  14 |   7  42 |   0  21  70 |   0    0   35  70 |   0    0    0   35  42 |   0   0    0    0  21  14 |  0   0   0   0   0   7  2 | *  *  *   *   *  * 36 *
. o3o3o3o3o3o3x   8 |   0  28 |   0   0  56 |   0    0    0  70 |   0    0    0    0  56 |   0   0    0    0   0  28 |  0   0   0   0   0   0  8 | *  *  *   *   *  *  * 9
or
. . . . . . . .  & | 72 |  14 |   42  42 |   70  210 |   70  280  210 |  42  210  420 |  14  84  210 140 |  2 14  42  70
-------------------+----+-----+----------+-----------+----------------+---------------+------------------+--------------
x . . . . . . .  & |  2 | 504 |    6   6 |   15   45 |   20   80   60 |  15   75  150 |   6  36   90  60 |  1  7  21  35
-------------------+----+-----+----------+-----------+----------------+---------------+------------------+--------------
x3o . . . . . .  & |  3 |   3 | 1008   * |    5    5 |   10   20   10 |  10   30   40 |   5  20   35  20 |  1  5  11  15
x . . . . . . x    |  4 |   4 |    * 756 |    0   10 |    0   20   20 |   0   20   60 |   0  10   40  30 |  0  2  10  20
-------------------+----+-----+----------+-----------+----------------+---------------+------------------+--------------
x3o3o . . . . .  &   4 |   6 |    4   0 | 1260    * |    4    4    0 |   6   12    6 |   4  12   12   4 |  1  4   6   5
x3o . . . . . x  &   6 |   9 |    2   3 |    * 2520 |    0    4    4 |   0    6   18 |   0   4   12  16 |  0  1   5  10
-------------------+----+-----+----------+-----------+----------------+---------------+------------------+--------------
x3o3o3o . . . .  &   5 |  10 |   10   0 |    5    0 | 1008    *    * |   3    3    0 |   3   6    3   0 |  1  3   3   1
x3o3o . . . . x  &   8 |  16 |    8   6 |    2    4 |    * 2520    * |   0    3    3 |   0   3    6   3 |  0  1   3   4
x3o . . . . o3x      9 |  18 |    6   9 |    0    6 |    *    * 1680 |   0    0    6 |   0   0    3   9 |  0  0   2   6
-------------------+----+-----+----------+-----------+----------------+---------------+------------------+--------------
x3o3o3o3o . . .  &   6 |  15 |   20   0 |   15    0 |    6    0    0 | 504    *    * |   2   2    0   0 |  1  2   1   0
x3o3o3o . . . x  &  10 |  25 |   20  10 |   10   10 |    2    5    0 |   * 1512    * |   0   2    2   0 |  0  1   2   1
x3o3o . . . o3x  &  12 |  30 |   16  18 |    3   18 |    0    3    4 |   *    * 2520 |   0   0    2   2 |  0  0   1   3
-------------------+----+-----+----------+-----------+----------------+---------------+------------------+--------------
x3o3o3o3o3o . .  &   7 |  21 |   35   0 |   35    0 |   21    0    0 |   7    0    0 | 144   *    *   * |  1  1   0   0
x3o3o3o3o . . x  &  12 |  36 |   40  15 |   30   20 |   12   15    0 |   2    6    0 |   * 504    *   * |  0  1   1   0
x3o3o3o . . o3x  &  15 |  45 |   35  30 |   15   40 |    3   15   10 |   0    3    5 |   *   * 1008   * |  0  0   1   1
x3o3o . . o3o3x     16 |  48 |   32  36 |    8   48 |    0   12   16 |   0    0    8 |   *   *    * 630 |  0  0   0   2
-------------------+----+-----+----------+-----------+----------------+---------------+------------------+--------------
x3o3o3o3o3o3o .  &   8 |  28 |   56   0 |   70    0 |   56    0    0 |  28    0    0 |   8   0    0   0 | 18  *   *   *
x3o3o3o3o3o . x  &  14 |  49 |   70  21 |   70   35 |   42   35    0 |  14   21    0 |   2   7    0   0 |  * 72   *   *
x3o3o3o3o . o3x  &  18 |  63 |   66  45 |   45   75 |   18   45   20 |   3   18   15 |   0   3    6   0 |  *  * 168   *
x3o3o3o . o3o3x  &  20 |  70 |   60  60 |   25  100 |    4   40   40 |   0    6   30 |   0   0    4   5 |  *  *   * 252

xxo3ooo3ooo3ooo3ooo3ooo3oxx&#xt   → both heights = 3/4
(oca || pseudo suph || dual oca)

... 

© 2004-2025
top of page